Resistance exercise protects mice from protein-induced fat accretion

  1. Michaela E Trautman
  2. Leah N Braucher
  3. Christian Elliehausen
  4. Wenyuan G Zhu
  5. Esther Zelenovskiy
  6. Madelyn Green
  7. Michelle M Sonsalla
  8. Chung-Yang Yeh
  9. Troy A Hornberger
  10. Adam R Konopka
  11. Dudley W Lamming  Is a corresponding author
  1. Department of Medicine, University of Wisconsin-Madison, United States
  2. William S. Middleton Memorial Veterans Hospital, United States
  3. Nutrition and Metabolism Graduate Program, University of Wisconsin- Madison, United States
  4. Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, United States
  5. Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, United States
  6. School of Veterinary Medicine, University of Wisconsin-Madison, United States
  7. University of Wisconsin Carbone Cancer Center, United States
7 figures, 2 tables and 1 additional file

Figures

Weight pulling protects from high-protein diet-induced weight and fat gain.

(A) Experimental design. (B, C) Food consumption per mouse (B) or normalized to body weight (C) after ~6 wk on the indicated diets. n = 8/group. (D–F) Body weight (D), lean mass (E), and fat mass (F)…

Figure 1—source data 1

Weight pulling protects from high-protein diet-induced weight and fat gain.

https://cdn.elifesciences.org/articles/91007/elife-91007-fig1-data1-v1.xlsx
Dietary protein content and resistance training did not significantly impact liver lipid droplet or inguinal white adipocyte size.

(A–C) Representative Oil-Red-O-stained liver sections from mice in the indicated groups, with quantification of average lipid droplet size (B) and number (C). n = 3–7/group. (D–F) Representative H&E-…

Figure 2—source data 1

Dietary protein content and resistance training did not significantly impact liver lipid droplet or inguinal white adipocyte size.

https://cdn.elifesciences.org/articles/91007/elife-91007-fig2-data1-v1.xlsx
Figure 3 with 1 supplement
Effect of diet and exercise on glycemic control and blood metabolites.

(A, B) Glucose (A) and insulin (B) tolerance tests were performed after 9–10 wk on the diet, respectively, and area under the curve (AUC) was calculated. n = 7–8 mice/group. (C–E) Blood was …

Figure 3—source data 1

Effect of diet and exercise on glycemic control and blood metabolites.

https://cdn.elifesciences.org/articles/91007/elife-91007-fig3-data1-v1.xlsx
Figure 3—figure supplement 1
Low-protein-fed animals have increased energy expenditure (EE) regardless of training regimen.

(A–F) Metabolic chambers were used to examine metabolic parameters after mice were fed the indicated diets for 8–9 wk. These included food consumption (A), spontaneous activity (B), respiratory …

Figure 3—figure supplement 1—source data 1

Low-protein-fed animals have increased energy expenditure regardless of training regimen.

https://cdn.elifesciences.org/articles/91007/elife-91007-fig3-figsupp1-data1-v1.xlsx
Strength and muscle growth is maximized by high protein and progressive resistance exercise.

(A–C) Weight pulling was performed three times per week for 12 wk. The average maximum weight pulled each week with area under the curve (AUC) (A) and the number of sets achieved (B) is shown. …

Figure 4—source data 1

Strength and muscle growth is maximized by high protein and progressive resistance exercise.

https://cdn.elifesciences.org/articles/91007/elife-91007-fig4-data1-v1.xlsx
Figure 5 with 1 supplement
Weight pulling and high-protein diet increased flexor digitorum longus (FDL) mass but not mitochondrial respiration.

(A–C) The muscle mass of the FDL in absolute mass (A), normalized to body weight (B), and (C) normalized to tibia length. n = 8/group. (D–H) Mitochondrial respiration parameters as measured in the …

Figure 5—source data 1

Weight pulling and high-protein diet increased flexor digitorum longus (FDL) mass but not mitochondrial respiration.

https://cdn.elifesciences.org/articles/91007/elife-91007-fig5-data1-v1.xlsx
Figure 5—figure supplement 1
Weight pulling and high-protein diet increase the mass of specific muscles.

(A–H) The mass of muscles was measured in absolute terms (A–D) and normalized to tibia length (E–H). The muscles measured were the quadriceps (A, E), soleus (B, F), plantaris (C, G), and forearm …

Figure 5—figure supplement 1—source data 1

Weight pulling and high-protein diet increase the mass of specific muscles.

https://cdn.elifesciences.org/articles/91007/elife-91007-fig5-figsupp1-data1-v1.xlsx
Bicep and forearm hypertrophy is maximized by high-protein (HP) diets and weight pulling (WP).

(A–C) Representative images of arm musculature (A) with quantification of biceps (B) and forearm (C) diameter. (B, C) n = 7–8 mice per group. Statistics for the overall effects of diet, training, …

Figure 6—source data 1

Bicep and forearm hypertrophy is maximized by high-protein (HP) diets and weight pulling (WP).

https://cdn.elifesciences.org/articles/91007/elife-91007-fig6-data1-v1.xlsx
Flexor digitorum longus (FDL) fiber-type hypertrophy is maximized by high-protein diets and weight pulling.

(A–H) Representative images of the FDL and fiber type with quantification of mid-belly cross-sectional area (CSA) (B), fibers per cross section (C), fiber CSA (D), and individual muscle fiber type …

Figure 7—source data 1

Flexor digitorum longus (FDL) fiber-type hypertrophy is maximized by high-protein diets and weight pulling.

https://cdn.elifesciences.org/articles/91007/elife-91007-fig7-data1-v1.xlsx

Tables

Table 1
Diet composition.
Amino acid-defined dietsLow proteinHigh protein
Teklad diet name7% protein calories36% protein calories
Teklad diet numberTD.140712TD.220097
ColorBlueGreen
Formulag/kgg/kg
Sucrose291.248214.867
Corn starch232.4110.7
Maltodextrin232.4110.7
Corn oil52.052.0
Olive oil29.029.0
Cellulose30.030.0
Mineral mix, AIN-93G-MX (94046)35.035.0
Calcium phosphate, dibasic8.28.2
Vitamin mix, Teklad (40060)10.010.0
% kcal from
Protein7.136.4
Carbohydrate74.444.7
Fat18.518.9
kcal/g3.93.9
Amino acid profileg/kgg/kg
l-Lysine HCl6.6433.308
l-Methionine2.1810.95
l-Cystine2.3411.767
l-Arginine2.0510.296
l-Phenylalanine2.1510.787
l-Tyrosine2.2511.277
l-Histidine HCl, monohydrate1.157.518
l-Isoleucine2.5412.748
l-Leucine8.2741.512
l-Threonine3.1615.853
l-Tryptophan1.15.557
l-Valine2.73513.729
l-Aspartic acid6.733.634
l-Glutamic acid9.4347.347
l-Alanine3.0515.33
Glycine0.964.838
l-Proline2.4112.111
l-Serine2.4112.111
Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Strain, strain background (Mus musculus), maleC57BL/6JThe Jackson LaboratoryCat# JAX:000664; RRID:IMSR_JAX:000664
AntibodyAnti-lamininMillipore Sigma#L93931:500
AntibodyMyosin heavy chain type IDevelopmental Studies Hybridoma Bank#BA-D5-s1:100
AntibodyMyosin heavy chain type IIADevelopmental Studies Hybridoma Bank#SC-71-s1:100
AntibodyMyosin heavy chain type IIBDevelopmental Studies Hybridoma Bank#BF-F3-s1:10
AntibodyRabbit IgG (H+L) Cross-Adsorbed Secondary Antibody in ICC/IFInvitrogen#A110111:5000
AntibodyAlexa Fluor 647 AffiniPure Goat Anti-Mouse IgG, Fcγ subclass 2b specificJackson ImmunoResearch#115-605-2071:100
AntibodyAlexa Fluor 488 AffiniPure Goat Anti-Mouse IgG, Fcγ subclass 1 specificJackson ImmunoResearch#115-545-2051:3000
AntibodyGoat anti-Mouse IgM (Heavy chain) Cross-Adsorbed Secondary Antibody, Alexa Fluor 350Invitrogen#A-315521:500
AntibodyProLong Gold Antifade MountantInvitrogen#P36930
Commercial assay or kitMouse/Rat FGF21 ELISAR&D Systems#MF2100
Commercial assay or kitMouse insulin ELISACrystal Chem#90080
Commercial assay or kitCholesterolPointe Scientific#23-666-200, #23-666-202, #23-666-201
Commercial assay or kitTriglyceridesPointe Scientific#23-666-411, #23-666-410, #23-666-412

Additional files

Download links