ESCRT-III-dependent adhesive and mechanical changes are triggered by a mechanism detecting alteration of Septate Junction integrity in Drosophila epithelial cells

  1. Thomas Esmangart de Bournonville
  2. Mariusz K Jaglarz
  3. Emeline Durel
  4. Roland Le Borgne  Is a corresponding author
  1. École Polytechnique Fédérale de Lausanne, Switzerland
  2. Jagiellonian University, Poland
  3. University of Rennes 1, CNRS, UMR 6290, France

Abstract

Barrier functions of proliferative epithelia are constantly challenged by mechanical and chemical constraints. How epithelia respond to and cope with disturbances of barrier functions to allow tissue integrity maintenance is poorly characterized. Cellular junctions play an important role in this process and intracellular traffic contribute to their homeostasis. Here, we reveal that, in Drosophila pupal notum, alteration of the bi- or tricellular septate junctions (SJs) triggers a mechanism with two prominent outcomes. On one hand, there is an increase in the levels of E-cadherin, F-Actin and non-muscle Myosin II in the plane of adherens junctions. On the other hand, β-integrin/Vinculin-positive cell contacts are reinforced along the lateral and basal membranes. We found that the weakening of SJ integrity, caused by the depletion of bi- or tricellular SJ components, alters ESCRT-III/Vps32/Shrub distribution, reduces degradation and instead favours recycling of SJ components, an effect that extends to other recycled transmembrane protein cargoes including Crumbs, its effector β-Heavy Spectrin Karst, and β-integrin. We propose a mechanism by which epithelial cells, upon sensing alterations of the septate junction, reroute the function of Shrub to adjust the balance of degradation/recycling of junctional cargoes and thereby compensate for barrier junction defects to maintain epithelial integrity.

Data availability

All data generated or analysed during this study are included in the manuscript and the supporting data files have been made available on Dryad and includes the data set DOI_10.5061_dryad.dbrv15f7h__v1. This dataset includes original stacks of confocal images from Fig. 1B-D and E-G, Fig. 2A,B,E and F, Fig. 3 A-D, Fig. 4 A-E, Fig. 5A,A',B,B',and D, Fig. 6 A-E' , Fig. 1S1 A-B and C,C', Fig. 2S1 A-B, D and E, Fig. 3S1 A,A' and C,C', , Fig. 5S1A-B', Fig. 5S2 A,B', and Fig.6S1 A-A' (including as well the confocal stacks used for quantification and statistical analyses); and detailed statistical analyses (Excel tables or Rtables) of Fig. 1 B'-D' and E'-G', Fig. 2 A',C,D and G, Fig. 5 C',D' and E, Fig. 6 F and G, Fig. 1S1 B',D and E, Fig 2S1 C,D' and E', Fig 3S1 B,D, Fig. 5S2 C and S6.

The following data sets were generated

Article and author information

Author details

  1. Thomas Esmangart de Bournonville

    Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6012-1726
  2. Mariusz K Jaglarz

    Department of Developmental Biology and Invertebrate Morphology, Jagiellonian University, Krakow, Poland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1606-8339
  3. Emeline Durel

    Institut de Génétique et Développement de Rennes, University of Rennes 1, CNRS, UMR 6290, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Roland Le Borgne

    Institut de Génétique et Développement de Rennes, University of Rennes 1, CNRS, UMR 6290, Rennes, France
    For correspondence
    roland.leborgne@univ-rennes1.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6892-278X

Funding

Fondation pour la Recherche Médicale (FDT202001010770)

  • Mariusz K Jaglarz

Agence Nationale de la Recherche (ANR-20-CE13-0015)

  • Roland Le Borgne

Fondation ARC pour la Recherche sur le Cancer (PJA 20191209388)

  • Roland Le Borgne

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Esmangart de Bournonville et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 888
    views
  • 179
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas Esmangart de Bournonville
  2. Mariusz K Jaglarz
  3. Emeline Durel
  4. Roland Le Borgne
(2024)
ESCRT-III-dependent adhesive and mechanical changes are triggered by a mechanism detecting alteration of Septate Junction integrity in Drosophila epithelial cells
eLife 13:e91246.
https://doi.org/10.7554/eLife.91246

Share this article

https://doi.org/10.7554/eLife.91246

Further reading

    1. Developmental Biology
    Emily Delgouffe, Samuel Madureira Silva ... Ellen Goossens
    Research Article

    Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys. The Leydig cells also exhibited a distribution analogous to peripubertal tissue, accompanied by a reduced insulin-like factor 3 expression. Although most peritubular myoid cells expressed alpha-smooth muscle actin 2, the expression pattern was disturbed. Besides this, fibrosis was particularly evident in the tubular wall and the lumen was collapsing in most participants. A spermatogenic arrest was also observed in all participants. The transcriptomic profile of transgender tissue confirmed a loss of mature characteristics - a partial rejuvenation - of the spermatogonial stem cell niche and, in addition, detected inflammation processes occurring in the samples. The present study shows that GAHT changes the spermatogonial stem cell niche by partially rejuvenating the somatic cells and inducing fibrotic processes. These findings are important to further understand how estrogens and testosterone suppression affect the testis environment, and in the case of orchidectomized testes as medical waste material, their potential use in research.

    1. Computational and Systems Biology
    2. Developmental Biology
    Rachael Kuintzle, Leah A Santat, Michael B Elowitz
    Research Article

    The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells. Here, we used a quantitative, bottom-up, cell-based approach to systematically characterize trans-activation, cis-inhibition, and cis-activation signaling efficiencies across a range of ligand and Fringe expression levels in Chinese hamster and mouse cell lines. Each ligand (Dll1, Dll4, Jag1, and Jag2) and receptor variant (Notch1 and Notch2) analyzed here exhibited a unique profile of interactions, Fringe dependence, and signaling outcomes. All four ligands were able to bind receptors in cis and in trans, and all ligands trans-activated both receptors, although Jag1-Notch1 signaling was substantially weaker than other ligand-receptor combinations. Cis-interactions were predominantly inhibitory, with the exception of the Dll1- and Dll4-Notch2 pairs, which exhibited cis-activation stronger than trans-activation. Lfng strengthened Delta-mediated trans-activation and weakened Jagged-mediated trans-activation for both receptors. Finally, cis-ligands showed diverse cis-inhibition strengths, which depended on the identity of the trans-ligand as well as the receptor. The map of receptor-ligand-Fringe interaction outcomes revealed here should help guide rational perturbation and control of the Notch pathway.