Homeostatic Control of Deep Sleep and Molecular Correlates of Sleep Pressure in Drosophila

  1. Budhaditya Chowdhury
  2. Lakshman Abhilash
  3. Antonio Ortega
  4. Sha Liu
  5. Orie T Shafer  Is a corresponding author
  1. City University of New York, United States
  2. VIB-KU Leuven Center for Brain & Disease Research, Belgium

Abstract

Homeostatic control of sleep is typically addressed through mechanical stimulation-induced forced wakefulness and the measurement of subsequent increases in sleep. A major confound attends this approach: biological responses to deprivation may reflect a direct response to the mechanical insult rather than to the loss of sleep. Similar confounds accompany all forms of sleep deprivation and represent a major challenge to the field. Here we describe a new paradigm for sleep deprivation in Drosophila that fully accounts for sleep-independent effects. Our results reveal that deep sleep states are the primary target of homeostatic control and establish the presence of multi-cycle sleep rebound following deprivation. Furthermore, we establish that specific deprivation of deep sleep state results in state-specific homeostatic rebound. Finally, by accounting for the molecular effects of mechanical stimulation during deprivation experiments, we show that serotonin levels track sleep pressure in the fly's central brain. Our results illustrate the critical need to control for sleep-independent effects of deprivation when examining the molecular correlates of sleep pressure and call for a critical reassessment of work that has not accounted for such non-specific effects.

Data availability

All Raw Data is available at Dryad.

The following data sets were generated

Article and author information

Author details

  1. Budhaditya Chowdhury

    Advanced Science Research Center, City University of New York, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lakshman Abhilash

    The Advanced Science Research Center, City University of New York, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Antonio Ortega

    VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Sha Liu

    VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Orie T Shafer

    Advanced Science Research Center, City University of New York, New York, United States
    For correspondence
    oshafer@gc.cuny.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7177-743X

Funding

National Institute of Neurological Disorders and Stroke (R21NS131939)

  • Orie T Shafer

National Institute of Neurological Disorders and Stroke (R01NS077933)

  • Orie T Shafer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John Ewer, Universidad de Valparaiso, Chile

Version history

  1. Preprint posted: October 2, 2022 (view preprint)
  2. Received: July 25, 2023
  3. Accepted: October 22, 2023
  4. Accepted Manuscript published: October 31, 2023 (version 1)
  5. Version of Record published: November 13, 2023 (version 2)

Copyright

© 2023, Chowdhury et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,386
    views
  • 246
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Budhaditya Chowdhury
  2. Lakshman Abhilash
  3. Antonio Ortega
  4. Sha Liu
  5. Orie T Shafer
(2023)
Homeostatic Control of Deep Sleep and Molecular Correlates of Sleep Pressure in Drosophila
eLife 12:e91355.
https://doi.org/10.7554/eLife.91355

Share this article

https://doi.org/10.7554/eLife.91355

Further reading

    1. Neuroscience
    Cristina Sáenz de Miera, Nicole Bellefontaine ... Carol F Elias
    Research Article

    The hypothalamic ventral premammillary nucleus (PMv) is a glutamatergic nucleus essential for the metabolic control of reproduction. However, conditional deletion of leptin receptor long form (LepRb) in vesicular glutamate transporter 2 (Vglut2) expressing neurons results in virtually no reproductive deficits. In this study, we determined the role of glutamatergic neurotransmission from leptin responsive PMv neurons on puberty and fertility. We first assessed if stimulation of PMv neurons induces luteinizing hormone (LH) release in fed adult females. We used the stimulatory form of designer receptor exclusively activated by designer drugs (DREADDs) in LeprCre (LepRb-Cre) mice. We collected blood sequentially before and for 1 hr after intravenous clozapine-N-oxide injection. LH level increased in animals correctly targeted to the PMv, and LH level was correlated to the number of Fos immunoreactive neurons in the PMv. Next, females with deletion of Slc17a6 (Vglut2) in LepRb neurons (LeprΔVGlut2) showed delayed age of puberty, disrupted estrous cycles, increased gonadotropin-releasing hormone (GnRH) concentration in the axon terminals, and disrupted LH secretion, suggesting impaired GnRH release. To assess if glutamate is required for PMv actions in pubertal development, we generated a Cre-induced reexpression of endogenous LepRb (LeprloxTB) with concomitant deletion of Slc17a6 (Vglut2flox) mice. Rescue of Lepr and deletion of Slc17a6 in the PMv was obtained by stereotaxic injection of an adeno-associated virus vector expressing Cre recombinase. Control LeprloxTB mice with PMv LepRb rescue showed vaginal opening, follicle maturation, and became pregnant, while LeprloxTB;Vglut2flox mice showed no pubertal development. Our results indicate that glutamatergic neurotransmission from leptin sensitive neurons regulates the reproductive axis, and that leptin action on pubertal development via PMv neurons requires Vglut2.

    1. Neuroscience
    Zahra Ghasemahmad, Aaron Mrvelj ... Jeffrey J Wenstrup
    Research Article

    The basolateral amygdala (BLA), a brain center of emotional expression, contributes to acoustic communication by first interpreting the meaning of social sounds in the context of the listener’s internal state, then organizing the appropriate behavioral responses. We propose that modulatory neurochemicals such as acetylcholine (ACh) and dopamine (DA) provide internal-state signals to the BLA while an animal listens to social vocalizations. We tested this in a vocal playback experiment utilizing highly affective vocal sequences associated with either mating or restraint, then sampled and analyzed fluids within the BLA for a broad range of neurochemicals and observed behavioral responses of adult male and female mice. In male mice, playback of restraint vocalizations increased ACh release and usually decreased DA release, while playback of mating sequences evoked the opposite neurochemical release patterns. In non-estrus female mice, patterns of ACh and DA release with mating playback were similar to males. Estrus females, however, showed increased ACh, associated with vigilance, as well as increased DA, associated with reward-seeking. Experimental groups that showed increased ACh release also showed the largest increases in an aversive behavior. These neurochemical release patterns and several behavioral responses depended on a single prior experience with the mating and restraint behaviors. Our results support a model in which ACh and DA provide contextual information to sound analyzing BLA neurons that modulate their output to downstream brain regions controlling behavioral responses to social vocalizations.