Homeostatic Control of Deep Sleep and Molecular Correlates of Sleep Pressure in Drosophila
Abstract
Homeostatic control of sleep is typically addressed through mechanical stimulation-induced forced wakefulness and the measurement of subsequent increases in sleep. A major confound attends this approach: biological responses to deprivation may reflect a direct response to the mechanical insult rather than to the loss of sleep. Similar confounds accompany all forms of sleep deprivation and represent a major challenge to the field. Here we describe a new paradigm for sleep deprivation in Drosophila that fully accounts for sleep-independent effects. Our results reveal that deep sleep states are the primary target of homeostatic control and establish the presence of multi-cycle sleep rebound following deprivation. Furthermore, we establish that specific deprivation of deep sleep state results in state-specific homeostatic rebound. Finally, by accounting for the molecular effects of mechanical stimulation during deprivation experiments, we show that serotonin levels track sleep pressure in the fly's central brain. Our results illustrate the critical need to control for sleep-independent effects of deprivation when examining the molecular correlates of sleep pressure and call for a critical reassessment of work that has not accounted for such non-specific effects.
Data availability
All Raw Data is available at Dryad.
-
Homeostatic Control of Deep Sleep and Molecular Correlates of Sleep Pressure in DrosophilaDryad Digital Repository, doi:10.5061/dryad.qnk98sfpp.
Article and author information
Author details
Funding
National Institute of Neurological Disorders and Stroke (R21NS131939)
- Orie T Shafer
National Institute of Neurological Disorders and Stroke (R01NS077933)
- Orie T Shafer
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2023, Chowdhury et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,194
- views
-
- 315
- downloads
-
- 6
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Medicine
- Neuroscience
Monomethyl fumarate (MMF) and its prodrug dimethyl fumarate (DMF) are currently the most widely used agents for the treatment of multiple sclerosis (MS). However, not all patients benefit from DMF. We hypothesized that the variable response of patients may be due to their diet. In support of this hypothesis, mice subjected to experimental autoimmune encephalomyelitis (EAE), a model of MS, did not benefit from DMF treatment when fed a lauric acid-rich (LA) diet. Mice on normal chow (NC) diet, in contrast, and even more so mice on high-fiber (HFb) diet showed the expected protective DMF effect. DMF lacked efficacy in the LA diet-fed group despite similar resorption and preserved effects on plasma lipids. When mice were fed the permissive HFb diet, the protective effect of DMF treatment depended on hydroxycarboxylic receptor 2 (HCAR2) which is highly expressed in neutrophil granulocytes. Indeed, deletion of Hcar2 in neutrophils abrogated DMF protective effects in EAE. Diet had a profound effect on the transcriptional profile of neutrophils and modulated their response to MMF. In summary, DMF required HCAR2 on neutrophils as well as permissive dietary effects for its therapeutic action. Translating the dietary intervention into the clinic may improve MS therapy.
-
- Neuroscience
Aβ is believed to play a significant role in synaptic degeneration observed in Alzheimer’s disease and is primarily investigated as a secreted peptide. However, the contribution of intracellular Aβ or other cleavage products of its precursor protein (APP) to synaptic loss remains uncertain. In this study, we conducted a systematic examination of their cell-autonomous impact using a sparse expression system in rat hippocampal slice culture. Here, these proteins/peptides were overexpressed in a single neuron, surrounded by thousands of untransfected neurons. Surprisingly, we found that APP induced dendritic spine loss only when co-expressed with BACE1. This effect was mediated by β-CTF, a β-cleavage product of APP, through an endosome-related pathway independent of Aβ. Neuronal expression of β-CTF in mouse brains resulted in defective synaptic transmission and cognitive impairments, even in the absence of amyloid plaques. These findings unveil a β-CTF-initiated mechanism driving synaptic toxicity irrespective of amyloid plaque formation and suggest a potential intervention by inhibiting the endosomal GTPase Rab5.