The population genetics of convergent adaptation in maize and teosinte is not locally restricted

  1. Silas Tittes  Is a corresponding author
  2. Anne Lorant
  3. Sean P McGinty
  4. James B Holland
  5. Jose de Jesus Sánchez-González
  6. Arun Seetharam
  7. Maud Tenaillon
  8. Jeffrey Ross-Ibarra  Is a corresponding author
  1. Department of Evolution and Ecology, University of California, Davis, United States
  2. Institute of Ecology and Evolution, University of Oregon, United States
  3. Center for Population Biology, University of California, Davis, United States
  4. Department of Plant Sciences, University of California, Davis, United States
  5. Department of Integrative Genetics and Genomics, University of California, Davis, United States
  6. United States Department of Agriculture– Agriculture Research Service, United States
  7. Department of Crop and Soil Sciences, North Carolina State University, United States
  8. Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Mexico
  9. Department of Ecology, Evolution, and Organismal Biology; Genome Informatics Facility, Iowa State University, United States
  10. Génétique Quantitative et Evolution - Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, France
  11. Genome Center, University of California, Davis, United States
14 figures, 4 tables and 1 additional file

Figures

The geographic distribution, population structure, and gene flow of maize and teosinte populations.

(A and D) Admixture proportions among populations within subspecies. The dominant cluster in each population is colored by sampling location. (B) The unrooted tree of maize and teosinte populations. (C) Geographic sampling locations for the studied maize and teosinte populations. (E) F4 tests to quantify evidence of gene flow between the subspecies for allopatric and sympatric population pairs. Each point in (E) reports the absolute Z-score for an F4 test, where a given focal population was partnered with another population of the same subspecies as a sister node, and two other populations from the other subspecies as a sister clade (see Materials and methods for further details). Black points show F4 tests that included maize from Crucero Lagunitas, otherwise points are colored by focal population. The dotted line corresponds to our chosen significance threshold (p=0.001).

Inbreeding, diversity, and demography.

The distribution of π (A) and Tajima’s D (B) calculated in 100 kb windows for maize and teosinte populations. Dashed lines show the median values for the two subspecies. Filled white points show the median values generated from coalescent simulations under the demographic history inferred for each population. Colors for each population are as in Figure 1 and are shown at the bottom of the figure. (C) The inferred demography for each population. (D) The quantile of observed homozygosity by descent (HBD) lengths (cM) versus those simulated under each population demography. Dashed lines shows the 1:1 correspondence between the axes. (E) The distribution of inbreeding coefficients in each population. Filled white points are the average values for each population.

The proportion of mutations fixed by natural selection.

Estimated values of the proportion of mutations fixed by natural selection (α) by population. Vertical lines show the 95% credible interval.

The distribution of shared and private selective sweeps.

(A) The total number of sweeps inferred in each population. (B) The proportion of sweeps that are unique to each population. (C) Negative log10 p-values for hypergeometric tests to identify maize-teosinte population pairs that shared more sweeps than expected by chance (see Materials and methods). p-Values were adjusted for multiple tests using the Benjamini and Yekutieli method. Populations along the y axis are maize (order matches the legend below, with Amatlán de Cañas at the bottom), while the point color designates the teosinte population each maize population was paired with. Points with black outline highlight the sympatric population comparisons. Point size is scaled by the number of shared sweeps identified in each pair. The dotted line indicates our chosen significance level (p=0.05). (D) Counts of shared and unique sweeps broken down by how many maize and teosinte populations they occurred in. Gray boxes show sweeps shared across the two subspecies.

Modes of convergent adaptation and affiliated parameters for shared selective sweeps.

(A) The difference in composite likelihood scores for the best supported mode of convergent adaptation (colors in top legend) compared to next best mode (black points), and best mode compared to the neutral model (other end of each line segment above or below black point). (B) Selection coefficients colored by the most likely mode of convergent adaptation. (C) Number of shared sweeps for both subspecies that were inferred to be from each convergent adaptation mode. (D) The most likely source population for shared sweeps that converged via migration. Bars are colored by population (bottom legend) and are outlined in black for teosinte and gray for maize. (E) Observed frequency of the inferred time in generations that each selected allele persisted prior to selection for models of convergent adaptation via standing variation. (F) Observed frequency of each inferred migration rate value for models of convergent adaptation via migration. (C, D, E, and F) are partitioned by which subspecies shared the sweep.

Appendix 2—figure 1
F4 tests including the maize Crucero Lagunitas population are significantly elevated compared to those without.
Appendix 3—figure 1
Predicted values of α across mutation types.

Gray bands for each mutation type show the 95% credible intervals averaged over each population.

Appendix 4—figure 1
Treemix phylogeny including both subsamples of Palmar Chico.
Appendix 4—figure 2
Performance to detect simulated hard, soft, and incomplete sweeps under varying strengths of selection under the maize Palmar Chico population demography.

Each panel shows a combinations of sweep type (hard, soft, or incomplete) and strength of selection (α=4Nes=10, 50, or 100).

Appendix 4—figure 3
Degree of overlap between simulated sweep regions taken from two down-sampled replicates under the maize Palmar Chico population demography.

Positive values show the amount of overlap in base pairs between sweep regions, while negative values represent the space between them. Panel structure follows that of Appendix 4—figure 2.

Appendix 4—figure 4
Frequency of each population as the mutation source for sweeps shared via migration.

The order of populations along the x axis matches that of the source populations labeled for each strip along the top.

Appendix 4—figure 5
Inferred sweeps shared between subspecies via migration.

The x axis is sorted by the number of populations each sweep was found in. Populations are sorted along the y axis first by subspecies then by their number of sweeps.

Appendix 4—figure 6
Variation in composite likelihoods within sweep regions.

(A) Distribution of differences between highest and next highest composite likelihoods within each sweep region. (B) Distribution of differences between highest and next highest composite likelihoods candidate beneficial mutation positions within each sweep region.

Author response image 1

Tables

Appendix 1—table 1
Population sampling location information.
PopulationSubspeciesSample sizeLatitudeLongitudeElevation (m)Accession ID
Crucero LagunitasMaize1016.98–99.282012373-GRO-294
Amatlán de CañasMaize1020.82–104.417605054-NAY-310
Los GuajesMaize1019.23–100.49985TC-300
San LorenzoMaize1019.94–103.99982RMM-15
Palmar ChicoMaize5518.64–100.351008JSG-RMM-LCL-529
Crucero LagunitasTeosinte1016.85–99.06590JSG-RMM-LCL-487
Amatlán de CañasTeosinte1020.82–104.41880JSG-JRP-ERG-543
El RodeoTeosinte1016.35–97.02982JSG-RMM-LCL-486
Los GuajesTeosinte1019.23–100.49851JSG Y RMM-454
San LorenzoTeosinte1019.94–103.99982RMM-13
Palmar ChicoTeosinte5018.64–100.35983JSG-RMM-LCL-528
Appendix 2—table 1
Significant F4 tests.

Each row of the table reports the number of significant F4 tests that occurred with a given focal and secondary population, where the two other tip positions were filled with each of the remaining populations for each subspecies.Rows that are left blank in the secondary column are used to report the total number of significant trees for a given focal population.

Focal populationSecondary populationCount
Maize Amatlan de Canas5
Maize Amatlan de CanasMaize Crucero Lagunitas5
Maize Amatlan de CanasTeosinte Amatlan de Canas3
Maize Amatlan de CanasTeosinte El Rodeo2
Maize Amatlan de CanasTeosinte Palmar Chico2
Maize Amatlan de CanasTeosinte San Lorenzo2
Maize Amatlan de CanasTeosinte Los Guajes1
Maize Crucero Lagunitas15
Maize Crucero LagunitasTeosinte Amatlan de Canas9
Maize Crucero LagunitasTeosinte Crucero Lagunitas6
Maize Crucero LagunitasTeosinte El Rodeo6
Maize Crucero LagunitasMaize Palmar Chico5
Maize Crucero LagunitasMaize Los Guajes4
Maize Crucero LagunitasTeosinte San Lorenzo4
Maize Crucero LagunitasMaize Amatlan de Canas3
Maize Crucero LagunitasMaize San Lorenzo3
Maize Crucero LagunitasTeosinte Palmar Chico3
Maize Crucero LagunitasTeosinte Los Guajes2
Maize Los Guajes6
Maize Los GuajesTeosinte Amatlan de Canas4
Maize Los GuajesMaize Crucero Lagunitas3
Maize Los GuajesTeosinte Crucero Lagunitas3
Maize Los GuajesMaize San Lorenzo2
Maize Los GuajesTeosinte Palmar Chico2
Maize Los GuajesMaize Palmar Chico1
Maize Los GuajesTeosinte El Rodeo1
Maize Los GuajesTeosinte Los Guajes1
Maize Los GuajesTeosinte San Lorenzo1
Maize Palmar Chico9
Maize Palmar ChicoTeosinte Amatlan de Canas7
Maize Palmar ChicoMaize Crucero Lagunitas5
Maize Palmar ChicoTeosinte Palmar Chico4
Maize Palmar ChicoTeosinte El Rodeo3
Maize Palmar ChicoMaize Los Guajes2
Maize Palmar ChicoMaize San Lorenzo2
Maize Palmar ChicoTeosinte San Lorenzo2
Maize Palmar ChicoTeosinte Crucero Lagunitas1
Maize Palmar ChicoTeosinte Los Guajes1
Maize San Lorenzo6
Maize San LorenzoTeosinte Amatlan de Canas4
Maize San LorenzoMaize Crucero Lagunitas3
Maize San LorenzoMaize Los Guajes2
Maize San LorenzoTeosinte Crucero Lagunitas2
Maize San LorenzoTeosinte El Rodeo2
Maize San LorenzoTeosinte Palmar Chico2
Maize San LorenzoMaize Palmar Chico1
Maize San LorenzoTeosinte Los Guajes1
Maize San LorenzoTeosinte San Lorenzo1
Teosinte Amatlan de Canas11
Teosinte Amatlan de CanasMaize Crucero Lagunitas9
Teosinte Amatlan de CanasMaize Palmar Chico4
Teosinte Amatlan de CanasMaize Amatlan de Canas3
Teosinte Amatlan de CanasMaize Los Guajes3
Teosinte Amatlan de CanasMaize San Lorenzo3
Teosinte Amatlan de CanasTeosinte Los Guajes3
Teosinte Amatlan de CanasTeosinte Palmar Chico3
Teosinte Amatlan de CanasTeosinte San Lorenzo3
Teosinte Amatlan de CanasTeosinte Crucero Lagunitas1
Teosinte Amatlan de CanasTeosinte El Rodeo1
Teosinte Crucero Lagunitas9
Teosinte Crucero LagunitasMaize Crucero Lagunitas6
Teosinte Crucero LagunitasMaize Los Guajes5
Teosinte Crucero LagunitasTeosinte Amatlan de Canas4
Teosinte Crucero LagunitasTeosinte El Rodeo4
Teosinte Crucero LagunitasMaize Palmar Chico3
Teosinte Crucero LagunitasMaize San Lorenzo3
Teosinte Crucero LagunitasMaize Amatlan de Canas1
Teosinte Crucero LagunitasTeosinte Palmar Chico1
Teosinte Los GuajesMaize Crucero Lagunitas3
Teosinte Los GuajesTeosinte Amatlan de Canas3
Teosinte Los Guajes3
Teosinte Los GuajesMaize Los Guajes1
Teosinte Los GuajesMaize Palmar Chico1
Teosinte Los GuajesMaize San Lorenzo1
Teosinte Palmar Chico8
Teosinte Palmar ChicoMaize Crucero Lagunitas5
Teosinte Palmar ChicoTeosinte Amatlan de Canas5
Teosinte Palmar ChicoMaize Palmar Chico4
Teosinte Palmar ChicoMaize Los Guajes3
Teosinte Palmar ChicoMaize San Lorenzo3
Teosinte Palmar ChicoTeosinte El Rodeo2
Teosinte Palmar ChicoMaize Amatlan de Canas1
Teosinte Palmar ChicoTeosinte Crucero Lagunitas1
Teosinte San LorenzoMaize Crucero Lagunitas5
Teosinte San Lorenzo5
Teosinte San LorenzoTeosinte Amatlan de Canas3
Teosinte San LorenzoMaize Palmar Chico2
Teosinte San LorenzoTeosinte El Rodeo2
Teosinte San LorenzoMaize Amatlan de Canas1
Teosinte San LorenzoMaize Los Guajes1
Teosinte San LorenzoMaize San Lorenzo1
Appendix 3—table 1
Proportion and count of fixed differences at 0-fold sites across teosinte populations.
PopulationProportionTotal
Amatlan de Canas0.122381195
Crucero Lagunitas0.156191880
El Rodeo0.232332983
Los Guajes0.03025170
San Lorenzo0.337966050
Palmar Chico0.03580184
Appendix 4—table 1
Performance to detect simulated hard, soft, and incomplete sweeps under varying strengths of selection under the maize Palmar Chico population demography.

TPR, TNR, FNR, and FPR stand for true positive, true negative, false negative, and false positive rates, respectively.

4NesSimulation typeTPRTNRFNRFPR
10Hard0.140.670.860.33
50Hard0.920.750.080.25
100Hard0.990.840.010.16
10Incomplete0.040.670.960.33
50Incomplete0.060.670.940.33
100Incomplete0.050.630.950.37
10Soft0.130.710.870.29
50Soft0.750.740.250.26
100Soft0.810.760.190.24

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Silas Tittes
  2. Anne Lorant
  3. Sean P McGinty
  4. James B Holland
  5. Jose de Jesus Sánchez-González
  6. Arun Seetharam
  7. Maud Tenaillon
  8. Jeffrey Ross-Ibarra
(2025)
The population genetics of convergent adaptation in maize and teosinte is not locally restricted
eLife 12:RP92405.
https://doi.org/10.7554/eLife.92405.3