Structural basis for the phase separation of the chromosome passenger complex

  1. Nikaela W Bryan
  2. Aamir Ali
  3. Ewa Niedzialkowska
  4. Leland Mayne
  5. P Todd Stukenberg
  6. Ben E Black  Is a corresponding author
  1. University of Pennsylvania, United States
  2. University of Virginia, United States

Abstract

The physical basis of phase separation is thought to consist of the same types of bonds that specify conventional macromolecular interactions yet is unsatisfyingly often referred to as 'fuzzy'. Gaining clarity on the biogenesis of membraneless cellular compartments is one of the most demanding challenges in biology. Here, we focus on the chromosome passenger complex (CPC), that forms a chromatin body that regulates chromosome segregation in mitosis. Within the three regulatory subunits of the CPC implicated in phase separation - a heterotrimer of INCENP, Survivin, and Borealin - we identify the contact regions formed upon droplet formation using hydrogen/deuterium-exchange mass spectrometry (HXMS). These contact regions correspond to some of the interfaces seen between individual heterotrimers within the crystal lattice they form. A major contribution comes from specific electrostatic interactions that can be broken and reversed through initial and compensatory mutagenesis, respectively. Our findings reveal structural insight for interactions driving liquid-liquid demixing of the CPC. Moreover, we establish HXMS as an approach to define the structural basis for phase separation.

Data availability

Source data are provided with this paper. The HXMS data in this study has been deposited in the Pride database under accession code PXD034374. The structure 2QFA [https://doi.org/10.2210/pdb2QFA/pdb] from the Protein Data Bank (www.rcsb.org) was used inthis study. An AlphaFold prediction for the Borealin protein (primary accession number Q53HL2) was used in this study.

The following data sets were generated

Article and author information

Author details

  1. Nikaela W Bryan

    Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5293-5145
  2. Aamir Ali

    Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ewa Niedzialkowska

    Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Leland Mayne

    Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6969-0474
  5. P Todd Stukenberg

    Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6788-2111
  6. Ben E Black

    Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    For correspondence
    blackbe@mail.med.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3707-9483

Funding

National Institute of General Medical Sciences (GM130302)

  • Ben E Black

National Institute of General Medical Sciences (GM134591)

  • Nikaela W Bryan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Bryan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 925
    views
  • 161
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nikaela W Bryan
  2. Aamir Ali
  3. Ewa Niedzialkowska
  4. Leland Mayne
  5. P Todd Stukenberg
  6. Ben E Black
(2024)
Structural basis for the phase separation of the chromosome passenger complex
eLife 13:e92709.
https://doi.org/10.7554/eLife.92709

Share this article

https://doi.org/10.7554/eLife.92709

Further reading

    1. Structural Biology and Molecular Biophysics
    Laura-Marie Silbermann, Benjamin Vermeer ... Katarzyna Tych
    Review Article

    Molecular chaperones are vital proteins that maintain protein homeostasis by assisting in protein folding, activation, degradation, and stress protection. Among them, heat-shock protein 90 (Hsp90) stands out as an essential proteostasis hub in eukaryotes, chaperoning hundreds of ‘clients’ (substrates). After decades of research, several ‘known unknowns’ about the molecular function of Hsp90 remain unanswered, hampering rational drug design for the treatment of cancers, neurodegenerative, and other diseases. We highlight three fundamental open questions, reviewing the current state of the field for each, and discuss new opportunities, including single-molecule technologies, to answer the known unknowns of the Hsp90 chaperone.

    1. Structural Biology and Molecular Biophysics
    Chuchu Wang, Chunyu Zhao ... Cong Liu
    Research Advance

    Previously, we reported that α-synuclein (α-syn) clusters synaptic vesicles (SV) Diao et al., 2013, and neutral phospholipid lysophosphatidylcholine (LPC) can mediate this clustering Lai et al., 2023. Meanwhile, post-translational modifications (PTMs) of α-syn such as acetylation and phosphorylation play important yet distinct roles in regulating α-syn conformation, membrane binding, and amyloid aggregation. However, how PTMs regulate α-syn function in presynaptic terminals remains unclear. Here, based on our previous findings, we further demonstrate that N-terminal acetylation, which occurs under physiological conditions and is irreversible in mammalian cells, significantly enhances the functional activity of α-syn in clustering SVs. Mechanistic studies reveal that this enhancement is caused by the N-acetylation-promoted insertion of α-syn’s N-terminus and increased intermolecular interactions on the LPC-containing membrane. N-acetylation in our work is shown to fine-tune the interaction between α-syn and LPC, mediating α-syn’s role in synaptic vesicle clustering.