Structural basis for the phase separation of the chromosome passenger complex

  1. Nikaela W Bryan
  2. Aamir Ali
  3. Ewa Niedzialkowska
  4. Leland Mayne
  5. P Todd Stukenberg
  6. Ben E Black  Is a corresponding author
  1. University of Pennsylvania, United States
  2. University of Virginia, United States

Abstract

The physical basis of phase separation is thought to consist of the same types of bonds that specify conventional macromolecular interactions yet is unsatisfyingly often referred to as 'fuzzy'. Gaining clarity on the biogenesis of membraneless cellular compartments is one of the most demanding challenges in biology. Here, we focus on the chromosome passenger complex (CPC), that forms a chromatin body that regulates chromosome segregation in mitosis. Within the three regulatory subunits of the CPC implicated in phase separation - a heterotrimer of INCENP, Survivin, and Borealin - we identify the contact regions formed upon droplet formation using hydrogen/deuterium-exchange mass spectrometry (HXMS). These contact regions correspond to some of the interfaces seen between individual heterotrimers within the crystal lattice they form. A major contribution comes from specific electrostatic interactions that can be broken and reversed through initial and compensatory mutagenesis, respectively. Our findings reveal structural insight for interactions driving liquid-liquid demixing of the CPC. Moreover, we establish HXMS as an approach to define the structural basis for phase separation.

Data availability

Source data are provided with this paper. The HXMS data in this study has been deposited in the Pride database under accession code PXD034374. The structure 2QFA [https://doi.org/10.2210/pdb2QFA/pdb] from the Protein Data Bank (www.rcsb.org) was used inthis study. An AlphaFold prediction for the Borealin protein (primary accession number Q53HL2) was used in this study.

The following data sets were generated

Article and author information

Author details

  1. Nikaela W Bryan

    Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5293-5145
  2. Aamir Ali

    Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ewa Niedzialkowska

    Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Leland Mayne

    Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6969-0474
  5. P Todd Stukenberg

    Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6788-2111
  6. Ben E Black

    Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    For correspondence
    blackbe@mail.med.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3707-9483

Funding

National Institute of General Medical Sciences (GM130302)

  • Ben E Black

National Institute of General Medical Sciences (GM134591)

  • Nikaela W Bryan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Silke Hauf, Virginia Tech, United States

Version history

  1. Preprint posted: May 22, 2023 (view preprint)
  2. Received: September 13, 2023
  3. Accepted: March 7, 2024
  4. Accepted Manuscript published: March 8, 2024 (version 1)
  5. Version of Record published: March 28, 2024 (version 2)

Copyright

© 2024, Bryan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 649
    views
  • 134
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nikaela W Bryan
  2. Aamir Ali
  3. Ewa Niedzialkowska
  4. Leland Mayne
  5. P Todd Stukenberg
  6. Ben E Black
(2024)
Structural basis for the phase separation of the chromosome passenger complex
eLife 13:e92709.
https://doi.org/10.7554/eLife.92709

Share this article

https://doi.org/10.7554/eLife.92709

Further reading

    1. Structural Biology and Molecular Biophysics
    Callum M Ives, Linh Nguyen ... Elisa Fadda
    Research Article

    Glycosylation of the SARS-CoV-2 spike (S) protein represents a key target for viral evolution because it affects both viral evasion and fitness. Successful variations in the glycan shield are difficult to achieve though, as protein glycosylation is also critical to folding and structural stability. Within this framework, the identification of glycosylation sites that are structurally dispensable can provide insight into the evolutionary mechanisms of the shield and inform immune surveillance. In this work, we show through over 45 μs of cumulative sampling from conventional and enhanced molecular dynamics (MD) simulations, how the structure of the immunodominant S receptor binding domain (RBD) is regulated by N-glycosylation at N343 and how this glycan’s structural role changes from WHu-1, alpha (B.1.1.7), and beta (B.1.351), to the delta (B.1.617.2), and omicron (BA.1 and BA.2.86) variants. More specifically, we find that the amphipathic nature of the N-glycan is instrumental to preserve the structural integrity of the RBD hydrophobic core and that loss of glycosylation at N343 triggers a specific and consistent conformational change. We show how this change allosterically regulates the conformation of the receptor binding motif (RBM) in the WHu-1, alpha, and beta RBDs, but not in the delta and omicron variants, due to mutations that reinforce the RBD architecture. In support of these findings, we show that the binding of the RBD to monosialylated ganglioside co-receptors is highly dependent on N343 glycosylation in the WHu-1, but not in the delta RBD, and that affinity changes significantly across VoCs. Ultimately, the molecular and functional insight we provide in this work reinforces our understanding of the role of glycosylation in protein structure and function and it also allows us to identify the structural constraints within which the glycosylation site at N343 can become a hotspot for mutations in the SARS-CoV-2 S glycan shield.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Marian Brenner, Christoph Zink ... Antje Gohla
    Research Article

    Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly understood, and whether vitamin B6 supplementation improves cognition is unclear as well. Pyridoxal 5’-phosphate phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5’-phosphate (PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry point into vitamin B6-associated pathologies. However, pharmacological PDXP inhibitors to test this concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combination of small-molecule screening, protein crystallography, and biolayer interferometry, we discover, visualize, and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated effects in the brain.