SRF-deficient astrocytes provide neuroprotection in mouse models of excitotoxicity and neurodegeneration

  1. Surya Chandra Rao Thumu
  2. Monika Jain
  3. Sumitha Soman
  4. Soumen Das
  5. Vijaya Verma
  6. Arnab Nandi
  7. David H Gutmann
  8. Balaji Jayaprakash
  9. Deepak Nair
  10. James P Clement
  11. Swananda Marathe
  12. Narendrakumar Ramanan  Is a corresponding author
  1. Indian Institute of Science Bangalore, India
  2. Jawaharlal Nehru Centre for Advanced Scientific Research, India
  3. Washington University in St. Louis, United States
  4. University of Exeter, United Kingdom
  5. Indian Institute of Technology Dharwad, India

Abstract

Reactive astrogliosis is a common pathological hallmark of central nervous system (CNS) injury, infection, and neurodegeneration, where reactive astrocytes can be protective or detrimental to normal brain functions. Currently, the mechanisms regulating neuroprotective astrocytes and the extent of neuroprotection are poorly understood. Here, we report that conditional deletion of serum response factor (SRF) in adult astrocytes causes reactive-like hypertrophic astrocytes throughout the mouse brain. These SrfGFAP-ERCKO astrocytes do not affect neuron survival, synapse numbers, synaptic plasticity or learning and memory. However, the brains of Srf knockout mice exhibited neuroprotection against kainic-acid induced excitotoxic cell death. Relevant to human neurodegenerative diseases, SrfGFAP-ERCKO astrocytes abrogate nigral dopaminergic neuron death and reduce b-amyloid plaques in mouse models of Parkinson's and Alzheimer's disease, respectively. Taken together, these findings establish SRF as a key molecular switch for the generation of reactive astrocytes with neuroprotective functions that attenuate neuronal injury in the setting of neurodegenerative diseases.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file

Article and author information

Author details

  1. Surya Chandra Rao Thumu

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Monika Jain

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Sumitha Soman

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Soumen Das

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6422-0238
  5. Vijaya Verma

    Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  6. Arnab Nandi

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  7. David H Gutmann

    Department of Neurology, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3127-5045
  8. Balaji Jayaprakash

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4442-6981
  9. Deepak Nair

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  10. James P Clement

    University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Swananda Marathe

    Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Karnataka, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2539-366X
  12. Narendrakumar Ramanan

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    For correspondence
    naren@iisc.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6088-9599

Funding

Department of Science and Technology, Ministry of Science and Technology, India (DST/SJF/LSA-01/2012-2013)

  • Narendrakumar Ramanan

Science and Engineering Research Board (CRG/2019/006899)

  • Narendrakumar Ramanan

Department of Biotechnology, Ministry of Science and Technology, India (BT/PR27952/INF/22/212/2018)

  • Deepak Nair

Science and Engineering Research Board (EMR/2015/001946)

  • James P Clement

Department of Science and Technology, Ministry of Science and Technology, India (DST/INSPIRE/04-I/2016-000002)

  • Swananda Marathe

Science and Engineering Research Board (PDF/2017/001385)

  • Surya Chandra Rao Thumu

University Grants Commission

  • Monika Jain

University Grants Commission

  • Soumen Das

Council for Scientific and Industrial Research , India

  • Arnab Nandi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sacha B Nelson, Brandeis University, United States

Ethics

Animal experimentation: All the procedures in this study were performed according to the rules and guidelines of the Committee for the Purpose of Control and Supervision of Experimental Animals (CPCSEA), India. The research protocol was approved by the Institutional Animal Ethics Committee (IAEC) of the Indian Institute of Science (Protocol numbers: CAF/Ethics/596/2018 and CAF/Ethics/731/2020).

Version history

  1. Preprint posted: May 17, 2023 (view preprint)
  2. Received: December 27, 2023
  3. Accepted: January 15, 2024
  4. Accepted Manuscript published: January 30, 2024 (version 1)
  5. Version of Record published: February 9, 2024 (version 2)

Copyright

© 2024, Thumu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,002
    views
  • 188
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Surya Chandra Rao Thumu
  2. Monika Jain
  3. Sumitha Soman
  4. Soumen Das
  5. Vijaya Verma
  6. Arnab Nandi
  7. David H Gutmann
  8. Balaji Jayaprakash
  9. Deepak Nair
  10. James P Clement
  11. Swananda Marathe
  12. Narendrakumar Ramanan
(2024)
SRF-deficient astrocytes provide neuroprotection in mouse models of excitotoxicity and neurodegeneration
eLife 13:e95577.
https://doi.org/10.7554/eLife.95577

Share this article

https://doi.org/10.7554/eLife.95577

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Irini Papazian, Maria Kourouvani ... Lesley Probert
    Research Article

    Autoimmune diseases of the central nervous system (CNS) such as multiple sclerosis (MS) are only partially represented in current experimental models and the development of humanized immune mice is crucial for better understanding of immunopathogenesis and testing of therapeutics. We describe a humanized mouse model with several key features of MS. Severely immunodeficient B2m-NOG mice were transplanted with peripheral blood mononuclear cells (PBMCs) from HLA-DRB1-typed MS and healthy (HI) donors and showed rapid engraftment by human T and B lymphocytes. Mice receiving cells from MS patients with recent/ongoing Epstein–Barr virus reactivation showed high B cell engraftment capacity. Both HLA-DRB1*15 (DR15) MS and DR15 HI mice, not HLA-DRB1*13 MS mice, developed human T cell infiltration of CNS borders and parenchyma. DR15 MS mice uniquely developed inflammatory lesions in brain and spinal cord gray matter, with spontaneous, hCD8 T cell lesions, and mixed hCD8/hCD4 T cell lesions in EAE immunized mice, with variation in localization and severity between different patient donors. Main limitations of this model for further development are poor monocyte engraftment and lack of demyelination, lymph node organization, and IgG responses. These results show that PBMC humanized mice represent promising research tools for investigating MS immunopathology in a patient-specific approach.

    1. Neuroscience
    Ju-Young Lee, Dahee Jung, Sebastien Royer
    Research Article

    Animals can use a repertoire of strategies to navigate in an environment, and it remains an intriguing question how these strategies are selected based on the nature and familiarity of environments. To investigate this question, we developed a fully automated variant of the Barnes maze, characterized by 24 vestibules distributed along the periphery of a circular arena, and monitored the trajectories of mice over 15 days as they learned to navigate towards a goal vestibule from a random start vestibule. We show that the patterns of vestibule visits can be reproduced by the combination of three stochastic processes reminiscent of random, serial, and spatial strategies. The processes randomly selected vestibules based on either uniform (random) or biased (serial and spatial) probability distributions. They closely matched experimental data across a range of statistical distributions characterizing the length, distribution, step size, direction, and stereotypy of vestibule sequences, revealing a shift from random to spatial and serial strategies over time, with a strategy switch occurring approximately every six vestibule visits. Our study provides a novel apparatus and analysis toolset for tracking the repertoire of navigation strategies and demonstrates that a set of stochastic processes can largely account for exploration patterns in the Barnes maze.