Coordination of cell cycle and morphogenesis during organ formation

Abstract

Organ formation requires precise regulation of cell cycle and morphogenetic events. Using the Drosophila embryonic salivary gland (SG) as a model, we uncover the role of the SP1/KLF transcription factor Huckebein (Hkb) in coordinating cell cycle regulation and morphogenesis. The hkb mutant SG exhibits defects in invagination positioning and organ size due to abnormal death of SG cells. Normal SG development involves distal-to-proximal progression of endoreplication (endocycle), whereas hkb mutant SG cells undergo abnormal cell division, leading to cell death. Hkb represses the expression of key cell cycle and pro-apoptotic genes in the SG. Knockdown of cyclin E or cyclin-dependent kinase 1, or overexpression of fizzy-related rescues most of the morphogenetic defects observed in the hkb mutant SG. These results indicate that Hkb plays a critical role in controlling endoreplication by regulating the transcription of key cell cycle effectors to ensure proper organ formation.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file.Supplementary file 3 contains all the full list of Hkb target genes, GO clusters, and the list of genes in each cluster.

The following previously published data sets were used

Article and author information

Author details

  1. Jeffrey Matthew

    Department of Biological Sciences, Louisiana State University, Baton Rouge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5686-6370
  2. Vishakha Vishwakarma

    Department of Biological Sciences, Louisiana State University, Baton Rouge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Thao Phuong Le

    Department of Biological Sciences, Louisiana State University, Baton Rouge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ryan A Agsunod

    Department of Biological Sciences, Louisiana State University, Baton Rouge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. SeYeon Chung

    Department of Biological Sciences, Louisiana State University, Baton Rouge, United States
    For correspondence
    seyeonchung@lsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5493-6424

Funding

National Science Foundation (MCB 2141387)

  • SeYeon Chung

Louisiana Board of Regents (LEQSF(2019-22)-RD-A-04)

  • SeYeon Chung

Louisiana State University

  • SeYeon Chung

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Claude Desplan, New York University, United States

Version history

  1. Preprint posted: July 21, 2023 (view preprint)
  2. Received: January 7, 2024
  3. Accepted: January 21, 2024
  4. Accepted Manuscript published: January 26, 2024 (version 1)
  5. Version of Record published: February 15, 2024 (version 2)

Copyright

© 2024, Matthew et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 787
    views
  • 162
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeffrey Matthew
  2. Vishakha Vishwakarma
  3. Thao Phuong Le
  4. Ryan A Agsunod
  5. SeYeon Chung
(2024)
Coordination of cell cycle and morphogenesis during organ formation
eLife 13:e95830.
https://doi.org/10.7554/eLife.95830

Share this article

https://doi.org/10.7554/eLife.95830

Further reading

    1. Cell Biology
    2. Developmental Biology
    Nicolas Loyer, Elizabeth KJ Hogg ... Jens Januschke
    Research Article Updated

    The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Mayank Verma, Yoko Asakura ... Atsushi Asakura
    Research Article Updated

    Endothelial and skeletal muscle lineages arise from common embryonic progenitors. Despite their shared developmental origin, adult endothelial cells (ECs) and muscle stem cells (MuSCs; satellite cells) have been thought to possess distinct gene signatures and signaling pathways. Here, we shift this paradigm by uncovering how adult MuSC behavior is affected by the expression of a subset of EC transcripts. We used several computational analyses including single-cell RNA-seq (scRNA-seq) to show that MuSCs express low levels of canonical EC markers in mice. We demonstrate that MuSC survival is regulated by one such prototypic endothelial signaling pathway (VEGFA-FLT1). Using pharmacological and genetic gain- and loss-of-function studies, we identify the FLT1-AKT1 axis as the key effector underlying VEGFA-mediated regulation of MuSC survival. All together, our data support that the VEGFA-FLT1-AKT1 pathway promotes MuSC survival during muscle regeneration, and highlights how the minor expression of select transcripts is sufficient for affecting cell behavior.