Pathogenic Huntingtin aggregates alter actin organization and cellular stiffness resulting in stalled clathrin mediated endocytosis

  1. Surya Bansi Singh
  2. Shatruhan Singh Rajput
  3. Aditya Sharma
  4. Sujal Kataria
  5. Priyanka Dutta
  6. Vaishnavi Ananthanarayanan
  7. Amitabha Nandi
  8. Shivaprasad Patil
  9. Amitabha Majumdar
  10. Deepa Subramanyam  Is a corresponding author
  1. National Centre for Cell Science, India
  2. Indian Institute of Science Education and Research Pune, India
  3. Indian Institute of Technology Bombay, India
  4. UNSW Sydney, Australia

Abstract

Aggregation of mutant forms of Huntingtin is the underlying feature of neurodegeneration observed in Huntington's disorder. In addition to neurons, cellular processes in non-neuronal cell types are also shown to be affected. Cells expressing neurodegeneration-associated mutant proteins show altered uptake of ligands, suggestive of impaired endocytosis, in a manner as yet unknown. Using live cell imaging, we show that clathrin-mediated endocytosis (CME) is affected in Drosophila hemocytes and mammalian cells containing Huntingtin aggregates. This is also accompanied by alterations in the organization of the actin cytoskeleton resulting in increased cellular stiffness. Further, we find that Huntingtin aggregates sequester actin and actin-modifying proteins. Overexpression of Hip1 or Arp3 (actin-interacting proteins) could restore CME and cellular stiffness in cells containing Huntingtin aggregates. Neurodegeneration driven by pathogenic Huntingtin was also rescued upon overexpression of either Hip1 or Arp3 in Drosophila. Examination of other pathogenic aggregates revealed that TDP-43 also displayed defective CME, altered actin organization and increased stiffness, similar to pathogenic Huntingtin. Together, our results point to an intimate connection between dysfunctional CME, actin misorganization and increased cellular stiffness caused by alteration in the local intracellular environment by pathogenic aggregates.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Surya Bansi Singh

    National Centre for Cell Science, Pune, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6612-5020
  2. Shatruhan Singh Rajput

    Department of Physics, Indian Institute of Science Education and Research Pune, Pune, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Aditya Sharma

    Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Sujal Kataria

    Department of Physics, Indian Institute of Science Education and Research Pune, Pune, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Priyanka Dutta

    National Centre for Cell Science, Pune, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8490-5813
  6. Vaishnavi Ananthanarayanan

    EMBL Australia Node in Single Molecule Science, UNSW Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2936-7853
  7. Amitabha Nandi

    Department of Physics, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6688-0237
  8. Shivaprasad Patil

    Department of Physics, Indian Institute of Science Education and Research Pune, Pune, India
    Competing interests
    The authors declare that no competing interests exist.
  9. Amitabha Majumdar

    National Centre for Cell Science, Pune, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6594-0672
  10. Deepa Subramanyam

    National Centre for Cell Science, Pune, India
    For correspondence
    deepa.subramanyam@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1650-5690

Funding

National Centre for Cell Science (NCCS/DIR/2018/24)

  • Amitabha Majumdar
  • Deepa Subramanyam

Government of India (CRG/2022/001891)

  • Shivaprasad Patil

Wellcome Trust-DBT India Alliance (IA/I/13/2/501030)

  • Amitabha Majumdar

Government of India (BT/PR25893/GET/119/174/2017)

  • Amitabha Majumdar

EMBL Australia

  • Vaishnavi Ananthanarayanan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Singh et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 506
    views
  • 148
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Surya Bansi Singh
  2. Shatruhan Singh Rajput
  3. Aditya Sharma
  4. Sujal Kataria
  5. Priyanka Dutta
  6. Vaishnavi Ananthanarayanan
  7. Amitabha Nandi
  8. Shivaprasad Patil
  9. Amitabha Majumdar
  10. Deepa Subramanyam
(2024)
Pathogenic Huntingtin aggregates alter actin organization and cellular stiffness resulting in stalled clathrin mediated endocytosis
eLife 13:e98363.
https://doi.org/10.7554/eLife.98363

Share this article

https://doi.org/10.7554/eLife.98363

Further reading

    1. Cell Biology
    2. Neuroscience
    Luis Sánchez-Guardado, Peyman Callejas Razavi ... Carlos Lois
    Research Article

    The assembly and maintenance of neural circuits is crucial for proper brain function. Although the assembly of brain circuits has been extensively studied, much less is understood about the mechanisms controlling their maintenance as animals mature. In the olfactory system, the axons of olfactory sensory neurons (OSNs) expressing the same odor receptor converge into discrete synaptic structures of the olfactory bulb (OB) called glomeruli, forming a stereotypic odor map. The OB projection neurons, called mitral and tufted cells (M/Ts), have a single dendrite that branches into a single glomerulus, where they make synapses with OSNs. We used a genetic method to progressively eliminate the vast majority of M/T cells in early postnatal mice, and observed that the assembly of the OB bulb circuits proceeded normally. However, as the animals became adults the apical dendrite of remaining M/Ts grew multiple branches that innervated several glomeruli, and OSNs expressing single odor receptors projected their axons into multiple glomeruli, disrupting the olfactory sensory map. Moreover, ablating the M/Ts in adult animals also resulted in similar structural changes in the projections of remaining M/Ts and axons from OSNs. Interestingly, the ability of these mice to detect odors was relatively preserved despite only having 1–5% of projection neurons transmitting odorant information to the brain, and having highly disrupted circuits in the OB. These results indicate that a reduced number of projection neurons does not affect the normal assembly of the olfactory circuit, but induces structural instability of the olfactory circuitry of adult animals.

    1. Cell Biology
    2. Physics of Living Systems
    Pyae Hein Htet, Edward Avezov, Eric Lauga
    Research Article

    The endoplasmic reticulum (ER), the largest cellular compartment, harbours the machinery for the biogenesis of secretory proteins and lipids, calcium storage/mobilisation, and detoxification. It is shaped as layered membranous sheets interconnected with a network of tubules extending throughout the cell. Understanding the influence of the ER morphology dynamics on molecular transport may offer clues to rationalising neuro-pathologies caused by ER morphogen mutations. It remains unclear, however, how the ER facilitates its intra-luminal mobility and homogenises its content. It has been recently proposed that intra-luminal transport may be enabled by active contractions of ER tubules. To surmount the barriers to empirical studies of the minuscule spatial and temporal scales relevant to ER nanofluidics, here we exploit the principles of viscous fluid dynamics to generate a theoretical physical model emulating in silico the content motion in actively contracting nanoscopic tubular networks. The computational model reveals the luminal particle speeds, and their impact in facilitating active transport, of the active contractile behaviour of the different ER components along various time–space parameters. The results of the model indicate that reproducing transport with velocities similar to those reported experimentally in single-particle tracking would require unrealistically high values of tubule contraction site length and rate. Considering further nanofluidic scenarios, we show that width contractions of the ER’s flat domains (perinuclear sheets) generate local flows with only a short-range effect on luminal transport. Only contractions of peripheral sheets can reproduce experimental measurements, provided they are able to contract fast enough.