Novel autophagy inducers by accelerating lysosomal clustering against Parkinson's disease

  1. Yuki Date
  2. Yukiko Sasazawa
  3. Mitsuhiro Kitagawa
  4. Kentaro Gejima
  5. Ayami Suzuki
  6. Hideyuki Saya
  7. yasuyuki kida
  8. Masaya Imoto
  9. Eisuke Itakura
  10. Nobutaka Hattori  Is a corresponding author
  11. Shinji Saiki  Is a corresponding author
  1. Chiba University, Japan
  2. Juntendo University, Japan
  3. Keio University, Japan
  4. National Institute of Advanced Industrial Science and Technology, Japan
  5. University of Tsukuba, Japan

Abstract

The autophagy-lysosome pathway plays an indispensable role in the protein quality control by degrading abnormal organelles and proteins including a-synuclein (aSyn) associated with the pathogenesis of Parkinson's disease (PD). However, the activation of this pathway is mainly by targeting lysosomal enzymic activity. Here, we focused on the autophagosome-lysosome fusion process around the microtubule-organizing center (MTOC) regulated by lysosomal positioning. Through high-throughput chemical screening, we identified 6 out of 1,200 clinically approved drugs enabling the lysosomes to accumulate around the MTOC with autophagy flux enhancement. We further demonstrated that these compounds induce the lysosomal clustering through a JIP4-TRPML1-dependent mechanism. Among them, the lysosomal-clustering compound albendazole promoted the autophagy-dependent degradation of Triton-X-insoluble, proteasome inhibitor-induced aggregates. In a cellular PD model, albendazole boosted insoluble aSyn degradation. Our results revealed that lysosomal clustering can facilitate the breakdown of protein aggregates, suggesting that lysosome-clustering compounds may offer a promising therapeutic strategy against neurodegenerative diseases characterized by the presence of aggregate-prone proteins.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Yuki Date

    Department of Biology, Chiba University, Chiba, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0009-0004-1099-1829
  2. Yukiko Sasazawa

    Department of Neurology, Juntendo University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0287-273X
  3. Mitsuhiro Kitagawa

    Department of Neurology, Juntendo University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Kentaro Gejima

    Department of Neurology, Juntendo University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Ayami Suzuki

    Department of Neurology, Juntendo University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Hideyuki Saya

    Division of Gene Regulation, Keio University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. yasuyuki kida

    Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Masaya Imoto

    Division for Development of Autophagy Modulating Drugs, Juntendo University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Eisuke Itakura

    Department of Biology, Chiba University, Chiba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Nobutaka Hattori

    Department of Neurology, Juntendo University, Tokyo, Japan
    For correspondence
    nhattori@juntendo.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2305-301X
  11. Shinji Saiki

    Department of Neurology, University of Tsukuba, Tsukuba, Japan
    For correspondence
    ssaiki@md.tsukuba.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9732-8488

Funding

Japan Society for the Promotion of Science London (18K15464 21K07425)

  • Yukiko Sasazawa

Japan Society for the Promotion of Science London (18KK0242 18KT0027 22H02986)

  • Shinji Saiki

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Date et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.98649

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.