An aspartyl protease defines a novel pathway for export of Toxoplasma proteins into the host cell

  1. Michael J Coffey
  2. Brad E Sleebs
  3. Alessandro D Uboldi
  4. Alexandra L Garnham
  5. Magdalena Franco
  6. Nicole D Marino
  7. Michael W Panas
  8. David JP Ferguson
  9. Marta Enciso
  10. Matthew T O'Neill
  11. Sash Lopaticki
  12. Rebecca J Stewart
  13. Grant Dewson
  14. Gordon K Smyth
  15. Brian J Smith
  16. Seth L Masters
  17. John C Boothroyd
  18. Justin A Boddey
  19. Christopher J Tonkin  Is a corresponding author
  1. The Walter and Eliza Hall Institute of Medical Research, Australia
  2. Stanford University School of Medicine, United States
  3. University of Oxford, United Kingdom
  4. La Trobe University, Australia
  5. Walter and Eliza Hall Institute of Medical Research, Australia

Abstract

Infection by Toxoplasma gondii leads to massive changes to the host cell. Here we identify a novel host cell effector export pathway, which requires the Golgi-resident Aspartyl Protease 5 (ASP5). We demonstrate that ASP5 cleaves a highly constrained amino acid motif that has similarity to the PEXEL-motif of Plasmodium parasites. We show that ASP5 matures substrates at both the N- and C-terminal ends of proteins and also controls trafficking of effectors without this motif. Furthermore, ASP5 controls establishment of the nanotubular network and is required for the efficient recruitment of host mitochondria to the vacuole. Assessment of host gene expression reveals that the ASP5-dependent pathway influences thousands of the transcriptional changes that Toxoplasma imparts on its host cell. All these changes result in attenuation of virulence of Δasp5 tachyzoites in vivo. This work characterizes the first identified machinery required for export of Toxoplasma effectors into the infected host cell.

Article and author information

Author details

  1. Michael J Coffey

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Brad E Sleebs

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Alessandro D Uboldi

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexandra L Garnham

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Magdalena Franco

    Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nicole D Marino

    Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael W Panas

    Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. David JP Ferguson

    Nuffield Department of Clinical Laboratory Science, University of Oxford, Oxoford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Marta Enciso

    La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Matthew T O'Neill

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Sash Lopaticki

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. Rebecca J Stewart

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  13. Grant Dewson

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  14. Gordon K Smyth

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  15. Brian J Smith

    La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  16. Seth L Masters

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  17. John C Boothroyd

    Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Justin A Boddey

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  19. Christopher J Tonkin

    Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    For correspondence
    tonkin@wehi.edu.au
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Axel A Brakhage, Friedrich Schiller University Jena and Hans-Knöll-Institut, Germany

Ethics

Animal experimentation: All animal experiments complied with the regulatory standards of and were approved by the Walter and Eliza Hall Institute Animal Ethics Committees under approval number 2014.019.

Version history

  1. Received: August 13, 2015
  2. Accepted: November 18, 2015
  3. Accepted Manuscript published: November 18, 2015 (version 1)
  4. Version of Record published: February 10, 2016 (version 2)

Copyright

© 2015, Coffey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,071
    views
  • 889
    downloads
  • 93
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael J Coffey
  2. Brad E Sleebs
  3. Alessandro D Uboldi
  4. Alexandra L Garnham
  5. Magdalena Franco
  6. Nicole D Marino
  7. Michael W Panas
  8. David JP Ferguson
  9. Marta Enciso
  10. Matthew T O'Neill
  11. Sash Lopaticki
  12. Rebecca J Stewart
  13. Grant Dewson
  14. Gordon K Smyth
  15. Brian J Smith
  16. Seth L Masters
  17. John C Boothroyd
  18. Justin A Boddey
  19. Christopher J Tonkin
(2015)
An aspartyl protease defines a novel pathway for export of Toxoplasma proteins into the host cell
eLife 4:e10809.
https://doi.org/10.7554/eLife.10809

Share this article

https://doi.org/10.7554/eLife.10809

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Alexander D Cook, Mark Carrington, Matthew K Higgins
    Research Article

    African trypanosomes replicate within infected mammals where they are exposed to the complement system. This system centres around complement C3, which is present in a soluble form in serum but becomes covalently deposited onto the surfaces of pathogens after proteolytic cleavage to C3b. Membrane-associated C3b triggers different complement-mediated effectors which promote pathogen clearance. To counter complement-mediated clearance, African trypanosomes have a cell surface receptor, ISG65, which binds to C3b and which decreases the rate of trypanosome clearance in an infection model. However, the mechanism by which ISG65 reduces C3b function has not been determined. We reveal through cryogenic electron microscopy that ISG65 has two distinct binding sites for C3b, only one of which is available in C3 and C3d. We show that ISG65 does not block the formation of C3b or the function of the C3 convertase which catalyses the surface deposition of C3b. However, we show that ISG65 forms a specific conjugate with C3b, perhaps acting as a decoy. ISG65 also occludes the binding sites for complement receptors 2 and 3, which may disrupt recruitment of immune cells, including B cells, phagocytes, and granulocytes. This suggests that ISG65 protects trypanosomes by combining multiple approaches to dampen the complement cascade.

    1. Microbiology and Infectious Disease
    Michael D Sacco, Lauren R Hammond ... Yu Chen
    Research Article

    In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to finetune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.