NF-κB oscillations translate into functionally related patterns of gene expression

  1. Samuel Zambrano
  2. Ilario De Toma
  3. Arianna Piffer
  4. Marco E Bianchi
  5. Alessandra Agresti  Is a corresponding author
  1. San Raffaele Scientific Institute, Italy
  2. San Raffaele University, Italy

Abstract

Several transcription factors (TFs) oscillate, periodically relocating between the cytoplasm and the nucleus. NF-κB, which plays key roles in inflammation and cancer, displays oscillations whose biological advantage remains unclear. Recent work indicated that NF-κB displays sustained oscillations that can be entrained -i.e. reach a persistent synchronized state through small periodic perturbations. We show here that for our GFP-p65 knock-in cells NF-κB behaves as a damped oscillator able to synchronize to a variety of periodic external perturbations with no memory. We imposed synchronous dynamics to prove that transcription of NF-κB-controlled genes also oscillates, but mature transcript levels follow 3 distinct patterns. Two sets of transcripts accumulate fast or slowly, respectively. Another set, comprising chemokine and chemokine receptor mRNAs, oscillates and resets at each new stimulus, with no memory of the past. We propose that TF oscillatory dynamics is a means of segmenting time to provide renewing opportunity windows for decision.

Article and author information

Author details

  1. Samuel Zambrano

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Ilario De Toma

    San Raffaele University, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Arianna Piffer

    San Raffaele University, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Marco E Bianchi

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Alessandra Agresti

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    For correspondence
    agresti.alessandra@hsr.it
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Suzanne Gaudet, Dana-Farber Cancer Institute, Harvard University, United States

Version history

  1. Received: June 1, 2015
  2. Accepted: January 13, 2016
  3. Accepted Manuscript published: January 14, 2016 (version 1)
  4. Version of Record published: March 10, 2016 (version 2)

Copyright

© 2016, Zambrano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,330
    views
  • 1,107
    downloads
  • 117
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samuel Zambrano
  2. Ilario De Toma
  3. Arianna Piffer
  4. Marco E Bianchi
  5. Alessandra Agresti
(2016)
NF-κB oscillations translate into functionally related patterns of gene expression
eLife 5:e09100.
https://doi.org/10.7554/eLife.09100

Share this article

https://doi.org/10.7554/eLife.09100

Further reading

    1. Computational and Systems Biology
    Antony M Jose
    Research Article

    Interacting molecules create regulatory architectures that can persist despite turnover of molecules. Although epigenetic changes occur within the context of such architectures, there is limited understanding of how they can influence the heritability of changes. Here, I develop criteria for the heritability of regulatory architectures and use quantitative simulations of interacting regulators parsed as entities, their sensors, and the sensed properties to analyze how architectures influence heritable epigenetic changes. Information contained in regulatory architectures grows rapidly with the number of interacting molecules and its transmission requires positive feedback loops. While these architectures can recover after many epigenetic perturbations, some resulting changes can become permanently heritable. Architectures that are otherwise unstable can become heritable through periodic interactions with external regulators, which suggests that mortal somatic lineages with cells that reproducibly interact with the immortal germ lineage could make a wider variety of architectures heritable. Differential inhibition of the positive feedback loops that transmit regulatory architectures across generations can explain the gene-specific differences in heritable RNA silencing observed in the nematode Caenorhabditis elegans. More broadly, these results provide a foundation for analyzing the inheritance of epigenetic changes within the context of the regulatory architectures implemented using diverse molecules in different living systems.

    1. Computational and Systems Biology
    2. Ecology
    Kazushi Tsutsui, Ryoya Tanaka ... Keisuke Fujii
    Research Article

    Collaborative hunting, in which predators play different and complementary roles to capture prey, has been traditionally believed to be an advanced hunting strategy requiring large brains that involve high-level cognition. However, recent findings that collaborative hunting has also been documented in smaller-brained vertebrates have placed this previous belief under strain. Here, using computational multi-agent simulations based on deep reinforcement learning, we demonstrate that decisions underlying collaborative hunts do not necessarily rely on sophisticated cognitive processes. We found that apparently elaborate coordination can be achieved through a relatively simple decision process of mapping between states and actions related to distance-dependent internal representations formed by prior experience. Furthermore, we confirmed that this decision rule of predators is robust against unknown prey controlled by humans. Our computational ecological results emphasize that collaborative hunting can emerge in various intra- and inter-specific interactions in nature, and provide insights into the evolution of sociality.