Demixed principal component analysis of neural population data

  1. Dmitry Kobak  Is a corresponding author
  2. Wieland Brendel
  3. Christos Constantinidis
  4. Claudia E Feierstein
  5. Adam Kepecs
  6. Zachary F Mainen
  7. Ranulfo Romo
  8. Xue-Lian Qi
  9. Naoshige Uchida
  10. Christian K Machens
  1. Champalimaud Centre for the Unknown, Portugal
  2. Wake Forest University School of Medicine, United States
  3. Cold Spring Harbor Laboratory, United States
  4. Universidad Nacional Autónoma de México, Mexico
  5. Harvard University, United States

Abstract

Neurons in higher cortical areas, such as the prefrontal cortex, are often tuned to a variety of sensory and motor variables, and are therefore said to display mixed selectivity. This complexity of single neuron responses can obscure what information these areas represent and how it is represented. Here we demonstrate the advantages of a new dimensionality reduction technique, demixed principal component analysis (dPCA), that decomposes population activity into a few components. In addition to systematically capturing the majority of the variance of the data, dPCA also exposes the dependence of the neural representation on task parameters such as stimuli, decisions, or rewards. To illustrate our method we reanalyze population data from four datasets comprising different species, different cortical areas and different experimental tasks. In each case, dPCA provides a concise way of visualizing the data that summarizes the task-dependent features of the population response in a single figure.

Article and author information

Author details

  1. Dmitry Kobak

    Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
    For correspondence
    dmitry.kobak@neuro.fchampalimaud.org
    Competing interests
    No competing interests declared.
  2. Wieland Brendel

    Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    No competing interests declared.
  3. Christos Constantinidis

    Wake Forest University School of Medicine, Winston-Salem, United States
    Competing interests
    No competing interests declared.
  4. Claudia E Feierstein

    Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    No competing interests declared.
  5. Adam Kepecs

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  6. Zachary F Mainen

    Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    No competing interests declared.
  7. Ranulfo Romo

    Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
    Competing interests
    No competing interests declared.
  8. Xue-Lian Qi

    Wake Forest University School of Medicine, Winston-Salem, United States
    Competing interests
    No competing interests declared.
  9. Naoshige Uchida

    Harvard University, Cambridge, United States
    Competing interests
    Naoshige Uchida, Reviewing editor, eLife.
  10. Christian K Machens

    Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    No competing interests declared.

Copyright

© 2016, Kobak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 41,650
    views
  • 6,958
    downloads
  • 493
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dmitry Kobak
  2. Wieland Brendel
  3. Christos Constantinidis
  4. Claudia E Feierstein
  5. Adam Kepecs
  6. Zachary F Mainen
  7. Ranulfo Romo
  8. Xue-Lian Qi
  9. Naoshige Uchida
  10. Christian K Machens
(2016)
Demixed principal component analysis of neural population data
eLife 5:e10989.
https://doi.org/10.7554/eLife.10989

Share this article

https://doi.org/10.7554/eLife.10989

Further reading

    1. Neuroscience
    Yafen Li, Yixuan Lin ... Antao Chen
    Research Article

    Concurrent verbal working memory task can eliminate the color-word Stroop effect. Previous research, based on specific and limited resources, suggested that the disappearance of the conflict effect was due to the memory information preempting the resources for distractors. However, it remains unclear which particular stage of Stroop conflict processing is influenced by working memory loads. In this study, electroencephalography (EEG) recordings with event-related potential (ERP) analyses, time-frequency analyses, multivariate pattern analyses (MVPAs), and representational similarity analyses (RSAs) were applied to provide an in-depth investigation of the aforementioned issue. Subjects were required to complete the single task (the classical manual color-word Stroop task) and the dual task (the Sternberg working memory task combined with the Stroop task), respectively. Behaviorally, the results indicated that the Stroop effect was eliminated in the dual-task condition. The EEG results showed that the concurrent working memory task did not modulate the P1, N450, and alpha bands. However, it modulated the sustained potential (SP), late theta (740–820 ms), and beta (920–1040 ms) power, showing no difference between congruent and incongruent trials in the dual-task condition but significant difference in the single-task condition. Importantly, the RSA results revealed that the neural activation pattern of the late theta was similar to the response interaction pattern. Together, these findings implied that the concurrent working memory task eliminated the Stroop effect through disrupting stimulus-response mapping.

    1. Neuroscience
    Yiheng Zhang, Yun Chen ... He Cui
    Research Article

    Although recent studies suggest that activity in the motor cortex, in addition to generating motor outputs, receives substantial information regarding sensory inputs, it is still unclear how sensory context adjusts the motor commands. Here, we recorded population neural activity in the motor cortex via microelectrode arrays while monkeys performed flexible manual interceptions of moving targets. During this task, which requires predictive sensorimotor control, the activity of most neurons in the motor cortex encoding upcoming movements was influenced by ongoing target motion. Single-trial neural states at the movement onset formed staggered orbital geometries, suggesting that target motion modulates peri-movement activity in an orthogonal manner. This neural geometry was further evaluated with a representational model and recurrent neural networks (RNNs) with task-specific input-output mapping. We propose that the sensorimotor dynamics can be derived from neuronal mixed sensorimotor selectivity and dynamic interaction between modulations.