Abstract

The FDA approved drug rapamycin increases lifespan in rodents and delays age-related dysfunction in rodents and humans. Nevertheless, important questions remain regarding the optimal dose, duration, and mechanisms of action in the context of healthy aging. Here we show that 3 months of rapamycin treatment is sufficient to increase life expectancy by up to 60% and improve measures of healthspan in middle-aged mice. This transient treatment is also associated with a remodeling of the microbiome, including dramatically increased prevalence of segmented filamentous bacteria in the small intestine. We also define a dose in female mice that does not extend lifespan, but is associated with a striking shift in cancer prevalence toward aggressive hematopoietic cancers and away from non-hematopoietic malignancies. These data suggest that a short-term rapamycin treatment late in life has persistent effects that can robustly delay aging, influence cancer prevalence, and modulate the microbiome.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Alessandro Bitto

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Takashi K Ito

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Victor V Pineda

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicolas J Letexier

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Heather Z Huang

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Elissa Sutlief

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Herman Tung

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Nicholas Vizzini

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Belle Chen

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Kaleb Smith

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Daniel Meza

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Masanao Yajima

    Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Richard P Beyer

    Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Kathleen F Kerr

    Department of Biostatistics, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Daniel J Davis

    Department of Veterinary Pathobiology, University of Missouri, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Catherine H Gillespie

    Department of Veterinary Pathobiology, University of Missouri, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Jessica M Snyder

    Department of Comparative Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Piper M Treuting

    Department of Comparative Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Matt Kaeberlein

    Department of Pathology, University of Washington, Seattle, United States
    For correspondence
    kaeber@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1311-3421

Funding

Samsung

  • Matt Kaeberlein

National Institute on Aging (P30AG013280)

  • Matt Kaeberlein

University of Washington

  • Daniel J Davis

National Institute on Aging (T32AG000057)

  • Alessandro Bitto

Japan Society for the Promotion of Science

  • Takashi K Ito

Uehara Memorial Foundation

  • Takashi K Ito

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Amy J Wagers, Harvard University, United States

Ethics

Animal experimentation: This study was performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#4359-01) of the University of Washington.

Version history

  1. Received: March 24, 2016
  2. Accepted: August 3, 2016
  3. Accepted Manuscript published: August 23, 2016 (version 1)
  4. Version of Record published: August 24, 2016 (version 2)

Copyright

© 2016, Bitto et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 19,128
    views
  • 2,187
    downloads
  • 287
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alessandro Bitto
  2. Takashi K Ito
  3. Victor V Pineda
  4. Nicolas J Letexier
  5. Heather Z Huang
  6. Elissa Sutlief
  7. Herman Tung
  8. Nicholas Vizzini
  9. Belle Chen
  10. Kaleb Smith
  11. Daniel Meza
  12. Masanao Yajima
  13. Richard P Beyer
  14. Kathleen F Kerr
  15. Daniel J Davis
  16. Catherine H Gillespie
  17. Jessica M Snyder
  18. Piper M Treuting
  19. Matt Kaeberlein
(2016)
Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice
eLife 5:e16351.
https://doi.org/10.7554/eLife.16351

Share this article

https://doi.org/10.7554/eLife.16351

Further reading

    1. Cancer Biology
    2. Cell Biology
    Savvas Nikolaou, Amelie Juin ... Laura M Machesky
    Research Article

    Pancreatic ductal adenocarcinoma carries a dismal prognosis, with high rates of metastasis and few treatment options. Hyperactivation of KRAS in almost all tumours drives RAC1 activation, conferring enhanced migratory and proliferative capacity as well as macropinocytosis. Macropinocytosis is well understood as a nutrient scavenging mechanism, but little is known about its functions in trafficking of signaling receptors. We find that CYRI-B is highly expressed in pancreatic tumours in a mouse model of KRAS and p53-driven pancreatic cancer. Deletion of Cyrib (the gene encoding CYRI-B protein) accelerates tumourigenesis, leading to enhanced ERK and JNK-induced proliferation in precancerous lesions, indicating a potential role as a buffer of RAC1 hyperactivation in early stages. However, as disease progresses, loss of CYRI-B inhibits metastasis. CYRI-B depleted tumour cells show reduced chemotactic responses to lysophosphatidic acid, a major driver of tumour spread, due to impaired macropinocytic uptake of the lysophosphatidic acid receptor-1. Overall, we implicate CYRI-B as a mediator of growth and signaling in pancreatic cancer, providing new insights into pathways controlling metastasis.

    1. Cancer Biology
    2. Cell Biology
    Timothy J Walker, Eduardo Reyes-Alvarez ... Lois M Mulligan
    Research Article

    Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.