1. Cancer Biology
Download icon

Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice

Research Article
  • Cited 130
  • Views 10,347
  • Annotations
Cite this article as: eLife 2016;5:e16351 doi: 10.7554/eLife.16351
Voice your concerns about research culture and research communication: Have your say in our 7th annual survey.

Abstract

The FDA approved drug rapamycin increases lifespan in rodents and delays age-related dysfunction in rodents and humans. Nevertheless, important questions remain regarding the optimal dose, duration, and mechanisms of action in the context of healthy aging. Here we show that 3 months of rapamycin treatment is sufficient to increase life expectancy by up to 60% and improve measures of healthspan in middle-aged mice. This transient treatment is also associated with a remodeling of the microbiome, including dramatically increased prevalence of segmented filamentous bacteria in the small intestine. We also define a dose in female mice that does not extend lifespan, but is associated with a striking shift in cancer prevalence toward aggressive hematopoietic cancers and away from non-hematopoietic malignancies. These data suggest that a short-term rapamycin treatment late in life has persistent effects that can robustly delay aging, influence cancer prevalence, and modulate the microbiome.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Alessandro Bitto

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Takashi K Ito

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Victor V Pineda

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicolas J Letexier

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Heather Z Huang

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Elissa Sutlief

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Herman Tung

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Nicholas Vizzini

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Belle Chen

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Kaleb Smith

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Daniel Meza

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Masanao Yajima

    Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Richard P Beyer

    Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Kathleen F Kerr

    Department of Biostatistics, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Daniel J Davis

    Department of Veterinary Pathobiology, University of Missouri, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Catherine H Gillespie

    Department of Veterinary Pathobiology, University of Missouri, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Jessica M Snyder

    Department of Comparative Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Piper M Treuting

    Department of Comparative Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Matt Kaeberlein

    Department of Pathology, University of Washington, Seattle, United States
    For correspondence
    kaeber@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1311-3421

Funding

Samsung

  • Matt Kaeberlein

National Institute on Aging (P30AG013280)

  • Matt Kaeberlein

University of Washington

  • Daniel J Davis

National Institute on Aging (T32AG000057)

  • Alessandro Bitto

Japan Society for the Promotion of Science

  • Takashi K Ito

Uehara Memorial Foundation

  • Takashi K Ito

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#4359-01) of the University of Washington.

Reviewing Editor

  1. Amy J Wagers, Harvard University, United States

Publication history

  1. Received: March 24, 2016
  2. Accepted: August 3, 2016
  3. Accepted Manuscript published: August 23, 2016 (version 1)
  4. Version of Record published: August 24, 2016 (version 2)

Copyright

© 2016, Bitto et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,347
    Page views
  • 1,655
    Downloads
  • 130
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cancer Biology
    2. Cell Biology
    Linda Julian et al.
    Research Article Updated

    Apoptosis is characterized by profound morphological changes, but their physiological purpose is unknown. To characterize the role of apoptotic cell contraction, ROCK1 was rendered caspase non-cleavable (ROCK1nc) by mutating aspartate 1113, which revealed that ROCK1 cleavage was necessary for forceful contraction and membrane blebbing. When homozygous ROCK1nc mice were treated with the liver-selective apoptotic stimulus of diethylnitrosamine, ROCK1nc mice had more profound liver damage with greater neutrophil infiltration than wild-type mice. Inhibition of the damage-associated molecular pattern protein HMGB1 or signalling by its cognate receptor TLR4 lowered neutrophil infiltration and reduced liver damage. ROCK1nc mice also developed fewer diethylnitrosamine-induced hepatocellular carcinoma (HCC) tumours, while HMGB1 inhibition increased HCC tumour numbers. Thus, ROCK1 activation and consequent cell contraction are required to limit sterile inflammation and damage amplification following tissue-scale cell death. Additionally, these findings reveal a previously unappreciated role for acute sterile inflammation as an efficient tumour-suppressive mechanism.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Nicole Merritt et al.
    Research Article

    Epithelioid hemangioendothelioma (EHE) is a vascular sarcoma that metastasizes early in its clinical course and lacks an effective medical therapy. The TAZ-CAMTA1 and YAP-TFE3 fusion proteins are chimeric transcription factors and initiating oncogenic drivers of EHE. A combined proteomic/genetic screen in human cell lines identified YEATS2 and ZZZ3, components of the Ada2a-containing histone acetyltransferase (ATAC) complex, as key interactors of both fusion proteins despite the dissimilarity of the C terminal fusion partners CAMTA1 and TFE3. Integrative next generation sequencing approaches in human and murine cell lines showed that the fusion proteins drive a unique transcriptome by simultaneously hyperactivating a TEAD-based transcriptional program and modulating the chromatin environment via interaction with the ATAC complex. Interaction of the ATAC complex with both fusion proteins indicates that it is a key oncogenic driver and unifying enzymatic therapeutic target for this sarcoma. This study presents an approach to mechanistically dissect how chimeric transcription factors drive the formation of human cancers.