Developmental Biology: Shaping the sound of voice

The proper development of the vocal cords requires embryos to contain a certain number of progenitor cells, and mutations that lead to an overflow of cells can cause malformations of the voice box.
  1. Ralph Marcucio  Is a corresponding author
  1. University of California San Francisco, United States

Acoustic communication is used by many different species. Animals employ sound to attract mates, to sense their environment, to send messages, to convey danger or just to entertain, while insects like ants and crickets also use sound for communication. There is even evidence that some plants use ‘acoustic reflectors’ to attract bats to pollinate, fertilize and distribute seeds (Schoner et al., 2016).

Vertebrates have many different ways to produce sound. Birds sing via a syrinx, for example, while dolphins emit ultrasonic waves by passing air through a structure called the dorsal bursa. Other mammals rely on a complex structure called the larynx that houses the vocal cords and is made of cartilage, muscle, ligament and connective tissue. As the air flows through the larynx, the shape and tension of the vocal cords create sounds through vibration, while the cartilage manipulates the pitch.

Although the biology of language and speech has been studied for decades, our understanding of how the vocal organs develop is still patchy, and most of what we know about the development of the larynx is based on research in bird embryos (Evans and Noden, 2006). As an embryo develops, the cells that will become the vocal organs undergo a series of transformations that are orchestrated by various signaling factors and pathways. Mutations in these pathways can cause structural birth defects, and such mutations may also lead to characteristic vocal traits in humans. For instance, patients with Pallister-Hall Syndrome (Hall et al., 1980), which arises from mutations in a Hedgehog signaling protein called Gli3, are said to have ‘growling’ voices.

Hedgehog signaling occurs within cellular structures called cilia, and patients with mutations in ciliary proteins also suffer from defects in their voice (Beales et al., 1999). It is also known that a ciliary protein called Fuz is required for Gli3 processing (Adler and Wallingford, 2017) but, until recently, it was not known if there was a mechanistic link between disorders affecting the cilia and the development of the larynx. Now, in eLife, John Wallingford and colleagues – including Jacqueline Tabler and Maggie Rigney of the University of Texas at Austin as joint first authors – report that Fuz is essential for the development of the larynx (Tabler et al., 2017).

To better understand how molecular signals and proteins regulate the development of the larynx, Tabler et al. used mutant mice that lacked either Gli3 or Fuz. In both groups of mice, the formation of the larynx was disrupted, but more severely in mice without Fuz. Tabler et al. then looked more closely at proteins of the Hedgehog signaling pathway, which are affected in Fuz mutants. In particular, they focused on a specific type of mutation in the gene for Gli3 that is known to cause birth defects in humans. Indeed, the larynx did not develop properly in these mice because of a build-up of connective tissue near the vocal cords, which affected their ability to make a sound.

In addition, an acoustic map comparing the sounds from wild type and Gli3 mutant mice showed that sound production was negatively affected in the mutants. It appears that changes to the sounds produced are not caused by changes in brain activity, but by physical changes in the larynx itself.

Lying at the heart of the complex process of laryngeal formation and malformation in these mutants is an incredibly simple explanation. Mutant embryos had more progenitor cells – the cells that are destined to build the larynx but have not fully developed yet. Tabler et al. suggest that regulation of the number of progenitor cells could have a role in many disorders affecting the cilia. This is not surprising as the size of the pool of progenitor cells is known to have an important role in other diseases (Jones et al., 2008) and also in evolution (Fish et al., 2014). Some of the observed changes have also been found in other animals, suggesting a conceptual framework for exploring the molecular and developmental basis of evolution that may contribute to diversity of the vocal repertoire among vertebrates.

References

    1. Beales PL
    2. Elcioglu N
    3. Woolf AS
    4. Parker D
    5. Flinter FA
    (1999)
    New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey
    Journal of Medical Genetics 36:437–446.

Article and author information

Author details

  1. Ralph Marcucio

    Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, United States
    For correspondence
    ralph.marcucio@ucsf.edu
    Competing interests
    The author declares that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0537-818X

Publication history

  1. Version of Record published: March 20, 2017 (version 1)

Copyright

© 2017, Marcucio

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,049
    views
  • 94
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ralph Marcucio
(2017)
Developmental Biology: Shaping the sound of voice
eLife 6:e25858.
https://doi.org/10.7554/eLife.25858
  1. Further reading

Further reading

    1. Developmental Biology
    Amandine Jarysta, Abigail LD Tadenev ... Basile Tarchini
    Research Article

    Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3, and GNAO proteins, but may also induce unrelated defects. Here, we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner G protein signaling modulator 2 (GPSM2), whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the sub-cellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: (1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and (2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.