Endosymbiosis: Gasping for air
Primary endosymbiosis involves the penetration of single cell bacteria into the cytoplasm of eukaryotic host cells, whereas secondary endosymbiosis involves single cell eukaryotes entering eukaryotic host cells. Both of these forms of endosymbiosis are usually followed by many different types of symbiotic interactions. Moreover, certain organelles found in eukaryotic cells, notably mitochondria and plastids, are the result of endosymbiosis.
Endosymbiosis is rather rare in vertebrates, mainly because their immune system is likely to fend off any invaders. So what challenges do potential symbionts face upon entering a potentially hostile intracellular environment? Now, in eLife, John Burns of the American Museum of Natural History, Ryan Kerney of Gettysburg College and colleagues provide a surprising answer to these questions (Burns et al., 2017).
A well-known example of a symbiotic relationship is that of the green Volvocean alga Oophila amblystomatis, and the spotted salamander Ambystoma maculatum. These algae are photosynthetic, so they use light energy to produce sugar and oxygen. Oophila algae also need oxygen to survive, but they can withstand anoxia (that is, a total lack of oxygen) for short periods of time.
It has been shown that Oophila algae grow better in water populated with salamander embryos, and the salamander embryos are healthier when more algae are present. Initially, it was thought that the alga and the salamander form an ectosymbiotic relationship, where the alga grows around the eggs of the salamander and supplies the embryo with oxygen and sugar in exchange for waste products (Graham et al., 2013; Small et al., 2014). However, it was recently discovered that these ectosymbionts can reach and penetrate into embryo cells to also form an endosymbiotic relationship, with the alga living inside the embryo cells of the salamander (Kerney et al., 2011).
To better understand the molecular mechanisms underlying this relationship, Burns et al. used a technique called differential expression RNA-seq analysis to compare the transcriptomes (that is, all the gene transcripts) of three different types of algae: ectosymbiotic algae that lived around the egg; endosymbiotic algae that lived inside the embryos; and algae that were grown in the laboratory (Burns et al., 2017). In addition, they compared the transcriptomes of the salamander embryo cells that either contained or lacked the algae.
The technical originality and finesse of this approach lie in the comparison between ecto- and endosymbiotic transcriptomes of the algae: studying the different types of symbiotic relationships that occur within the same individual helps to provide a clearer picture of the molecular mechanisms that shape these processes.
Burns et al. discovered that the endosymbiotic algae experienced a shift from an oxidative metabolism to a fermentative metabolism. The algae also experienced a clear increase in transcripts from genes of algal fermentative metabolism, including an increase of hydrogenase, which is the hallmark of a switch to anoxia (Grossman et al., 2011). This was accompanied by a reduction in transcripts of core components of photosystem II (which produces oxygen) and mitochondrial complex I. This response mirrors the response of the related green alga Chlamydomonas reinhardti to an absence of sulfur, which involves a reduction in oxygen production by photosystem II, as well as reductions in sulfate transport and sulfur metabolism (Nguyen et al., 2008).
The limitations imposed on photosynthesis by shortages of oxygen and/or sulfur, combined with a lack of light inside the embryonic cells, means that very little carbon fixation will occur. This is consistent with previous work which showed that immotile endosymbionts display lower levels of starch than free-swimming ectosymbionts, despite the fact that swimming has been demonstrated to have a strong negative impact on starch accumulation in C. reinhardti (Hamilton et al., 1992).
In addition to those symptoms related to a lack of oxygen, the algae inside the embryo showed signs of cellular stress and had higher levels of proteins that are usually expressed in response to stressors such as heat shock or autophagy. Hence, the endosymbionts are likely gasping for air and actively breaking down their polysaccharide stores by fermentation, which is a well-known response to hypoxia in Volvocean algae (Klein and Betz, 1978). Given these circumstances, it seems rather unlikely that the endosymbiotic algae are in a position to supply significant amounts of either oxygen or photosynthate to the embryo cells. It remains thus unclear how these cells may actually benefit from the presence of the algae.
The dramatic response of the endosymbiotic algae to a lack of oxygen somewhat resembles the responses that occur in certain intracellular parasites (Polonais and Soldati-Favre, 2010) or bacteria. These microorganisms show similar stress responses and need fermentation to create energy. In addition, some bacteria use a specific enzyme with a high affinity to oxygen to initiate a cellular ‘microaerophilic’ response when oxygen is scarce or unavailable (Juul et al., 2007; Omsland et al., 2013).
The embryo cells, on the other hand, appeared to be rather unfazed by the algae living inside them. Modifications in their gene transcripts suggested a lowered innate immune response, and while the embryo cells with endosymbiotic algae experienced changes in their metabolic signaling pathways, they did not exhibit any signs of stress.
The work by Burns et al. highlights the problems a lack of oxygen in the intracellular environment can pose for photosynthetic algae, once they have managed to breach the immune defenses of their host. The unexpected shortage of sulfur inside the host cell exacerbates these problems, leading to a switch to fermentative metabolism. It is thought that primary or secondary plastids – organelles found in plants and algae that are responsible for producing and storing food – evolved from comparable photosynthetic endosymbionts (cyanobacteria or eukaryotic algae) that had to address these and other challenges.
References
-
Intracapsular algae provide fixed carbon to developing embryos of the salamander Ambystoma maculatumJournal of Experimental Biology 216:452–459.https://doi.org/10.1242/jeb.076711
-
Accumulation of starch in Chlamydomonas reinhardtii flagellar mutantsBiochemistry and Cell Biology 70:255–258.https://doi.org/10.1139/o92-039
-
Characterization of in vitro chlamydial cultures in low-oxygen atmospheresJournal of Bacteriology 189:6723–6726.https://doi.org/10.1128/JB.00279-07
-
Fermentative metabolism of hydrogen-evolving Chlamydomonas moewusiiPlant Physiology 61:953–956.https://doi.org/10.1104/pp.61.6.953
-
Versatility in the acquisition of energy and carbon sources by the ApicomplexaBiology of the Cell 102:435–445.https://doi.org/10.1042/BC20100005
Article and author information
Author details
Publication history
Copyright
© 2017, Ball et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,642
- views
-
- 157
- downloads
-
- 2
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Ecology
Global change is causing unprecedented degradation of the Earth’s biological systems and thus undermining human prosperity. Past practices have focused either on monitoring biodiversity decline or mitigating ecosystem services degradation. Missing, but critically needed, are management approaches that monitor and restore species interaction networks, thus bridging existing practices. Our overall aim here is to lay the foundations of a framework for developing network management, defined here as the study, monitoring, and management of species interaction networks. We review theory and empirical evidence demonstrating the importance of species interaction networks for the provisioning of ecosystem services, how human impacts on those networks lead to network rewiring that underlies ecosystem service degradation, and then turn to case studies showing how network management has effectively mitigated such effects or aided in network restoration. We also examine how emerging technologies for data acquisition and analysis are providing new opportunities for monitoring species interactions and discuss the opportunities and challenges of developing effective network management. In summary, we propose that network management provides key mechanistic knowledge on ecosystem degradation that links species- to ecosystem-level responses to global change, and that emerging technological tools offer the opportunity to accelerate its widespread adoption.
-
- Ecology
- Evolutionary Biology
Eurasia has undergone substantial tectonic, geological, and climatic changes throughout the Cenozoic, primarily associated with tectonic plate collisions and a global cooling trend. The evolution of present-day biodiversity unfolded in this dynamic environment, characterised by intricate interactions of abiotic factors. However, comprehensive, large-scale reconstructions illustrating the extent of these influences are lacking. We reconstructed the evolutionary history of the freshwater fish family Nemacheilidae across Eurasia and spanning most of the Cenozoic on the base of 471 specimens representing 279 species and 37 genera plus outgroup samples. Molecular phylogeny using six genes uncovered six major clades within the family, along with numerous unresolved taxonomic issues. Dating of cladogenetic events and ancestral range estimation traced the origin of Nemacheilidae to Indochina around 48 mya. Subsequently, one branch of Nemacheilidae colonised eastern, central, and northern Asia, as well as Europe, while another branch expanded into the Burmese region, the Indian subcontinent, the Near East, and northeast Africa. These expansions were facilitated by tectonic connections, favourable climatic conditions, and orogenic processes. Conversely, aridification emerged as the primary cause of extinction events. Our study marks the first comprehensive reconstruction of the evolution of Eurasian freshwater biodiversity on a continental scale and across deep geological time.