Human deep brain stimulation reduces risky decisions

Deep brain stimulation of the subthalamic nucleus during a gambling game reduces risky-decision making in patients with Parkinson’s disease.

Image credit: Todd Herrington, generated with Lead-DBS, http://www.lead-dbs.org (CC BY 4.0)

Deep brain stimulation, or DBS for short, is used to treat movement disorders like Parkinson’s disease in patients who are responding inadequately to medications. It requires implanting an electrode into the brain and using electrical stimulation aimed at a specific cluster of brain cells to reduce unwanted symptoms. DBS helps to normalize abnormal brain activity similar to a pacemaker resetting an abnormal heart rhythm. Scientists are currently studying whether DBS might also help people with obsessive-compulsive disorder, depression, Alzheimer’s disease or other disorders that affect thinking.

To alter human behavior and treat disorders that affect thinking, DBS will have to be delivered at precise time points as the brain processes information. One potential target is for DBS in both movement and thinking disorders is the subthalamic nucleus. This is a small almond-shaped cluster of brain cells that helps people stop movements. Recent studies suggest it also may play a role in processing emotions, controlling inappropriate responses, and psychiatric illnesses.

Now, Patel et al. show that the subthalamic nucleus helps people decide what to do in the face of uncertainty and that targeting this brain structure with DBS can shift a person’s decision-making. In the experiments, patients with Parkinson’s disease who were awake and undergoing surgery to implant the DBS electrodes also played a computerized gambling game. Patel et al. recorded the electrical activity in the brain cells of the patient’s subthalamic nucleus during the game. The experiments showed that when patients were faced with a decision with 50/50 odds, the pattern of electrical activity in the cells of their subthalamic nucleus reveals their choice about 500 milliseconds before they act on it.

After their surgeries, patients engaged in the same gambling game. This time, Patel et al. specifically targeted the decision-related activity in their subthalamic nucleus with DBS. This caused the patients to make fewer risky decisions in the game. The experiments show DBS can change decision-making behavior in humans. Newer DBS technology may be even more effective at treating brain disorders and cause fewer side effects. Further study into how the brain processes information will also help scientists to better target DBS and possibly treat a broader range of diseases.