
Bee collecting nectar from an almond flower. Image credit: Fir0002/Flagstaffotos (CC BY-NC)
Most plants produce chemicals that are toxic to at least some animals. Whether or not the toxins are harmful to a particular animal depends on how much they consume and the specific biochemistry that occurs during digestion. The enzymes produced in the gut both by the animal and by the microbes that reside there often help break down toxic substances into less harmful molecules. However, some products of this breakdown can be toxic themselves. While these products can harm the animal, they may also be detrimental to parasites living in the gut, resulting in an overall positive effect.
Almonds and their pollen are consumed by humans and bees without apparent harmful effects. However, almonds contain amygdalin, a molecule that can produce the highly toxic compound hydrogen cyanide upon digestion. Although amygdalin can be toxic to bees in high doses, the amount usually found in almond nectar is not harmful, and indeed, it may protect bees from parasites. Motta et al. wanted to know how amygdalin is digested in the gut of bees, and whether gut microbes have a role in this digestion.
To answer these questions, Motta et al. compared the effects of consuming amygdalin on normal bees and bees lacking gut microbes. Bees without gut microbes broke down amygdalin into a harmless substance called prunasin. However, only bees with gut microbes could further break down prunasin into hydrogen cyanide. Interestingly, the full metabolism of amygdalin had no detectable effect on whether the bees survived for longer times or on which microbes were found in the gut. Motta et al. also found some gut bacteria in bees that can break down amygdalin and release hydrogen cyanide, and identified the enzyme responsible for the process. When the gene encoding this enzyme was inserted into a different species of bacteria, the second species gained the ability to break down amygdalin.
The findings of Motta et al. explain a role of gut microbes in processing amygdalin in bees. In the future, this may be the key to understanding how humans and other creatures process plant toxins. Future work on the relationship between animals and microbes living in their guts could help scientists understand how to manipulate the digestion and processing of toxins, nutrients, or drugs to benefit human health.