
Image credit: Felix Lankester (CC BY 4.0)
Livestock reproductive losses are a major concern for farmers worldwide as they cause significant economic impacts, particularly for those that are heavily dependent on their livestock for food security. On top of this, such losses can also pose a threat to public health if they are caused by infections that can also be transmitted to humans.
Spontaneous abortion (when a pregnancy ends early and a foetus is expelled) can be caused by a number of factors, including infections, nutritional deficiencies and genetic issues. Identifying the cause is easier if high quality samples are collected from the aborting mother and the foetus. However, this can be difficult in some low-and middle-income countries, where such samples are rarely collected and analysed.
Lankester et al. wanted to investigate whether livestock abortion surveillance could be used to understand the causes and effects of livestock abortion in Tanzania. To do this, the researchers asked farmers to report abortion cases to livestock field officers. These officers alerted investigation teams to collect samples and conduct questionnaires which provided information on the livestock breeds, seasonal patterns and potential pathogens involved in 215 abortion cases in cattle, sheep and goats.
Analysis revealed that successfully identifying the cause of abortion depends heavily on the timing and quality of the samples. The chances of diagnosis decreased with each day that passed between the abortion and the samples being collected. Vaginal swabs, which are easier to collect than those from the placenta or aborted foetus, were the most effective at detecting abortion-causing infectious agents.
The analysis also revealed that many of the livestock which had an abortion in the previous 12 months had experienced one or more abortions before. This suggests that an infectious agent may be the cause and that, through surveillance and accurate diagnosis, managing these animals by removing them from the herd might improve productivity. Abortions were also more common in non-local breeds of cattle and goats, suggesting that local breeds may have a degree of resistance to abortion.
The findings of Lankester et al. reveal a method of livestock surveillance that is feasible in areas with limited resources and could be used to increase understanding of the causes of livestock abortion. Such information could help to direct interventions that prevent abortion and improve livestock health, ultimately helping to improve food security while reducing the risk of infection for livestock-owners in lower- and middle-income countries.