Multi-talker speech comprehension at different temporal scales in listeners with normal and impaired hearing

  1. Department of Linguistics and Translation, City University of Hong Kong, Hong Kong, Hong Kong
  2. Department of Facial Plastic and Reconstructive Surgery and ENT institute, Eye & ENT Hospital, Fudan University, Shanghai, China.
  3. Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
  4. Department of Computer Science and Technology, Nanjing University, Nanjing, China
  5. Institute of Automation, Chinese Academy of Sciences, Beijing, China
  6. Department of Linguistics, Department of Psychology, New York University, New York, United States
  7. Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine., Shanghai, China

Peer review process

Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Nai Ding
    Zhejiang University, Hangzhou, China
  • Senior Editor
    Barbara Shinn-Cunningham
    Carnegie Mellon University, Pittsburgh, United States of America

Reviewer #1 (Public review):

About R squared in the plots:
The authors have used a z-scored R squared in the main ridge regression plots. While this may be interpretable, it seems non-standard and overly complicated. The authors could use a simple Pearson r to be most direct and informative (and in line with similar work, including Goldstein et al. 2022 which they mentioned). This way the sign of the relationships is preserved.

About the new TRF analysis:
The new TRF analysis is a necessary addition and much appreciated. However, it is missing the results for the acoustic regressors, which should be there analogous to the HM-LSTM ridge analysis. The authors should also specify which software they have utilized to conduct the new TRF analysis. It also seems that the linguistic predictors/regressors have been newly constructed in a way more consistent with previous literature (instead of using the HM-LSTM features); these specifics should also be included in the manuscript (did it come from Montreal Forced Aligner, etc.?). Now that the original HM-LSTM can be compared to a more standard TRF analysis, it is apparent that the results are similar.

The authors' wording about this suggests that these new regressors have a nonzero sample at each linguistic event's offset, not onset. This should also be clarified. As the authors know, the onset would be more standard, and using the offset has implications for understanding the timing of the TRFs, as a phoneme has a different duration than a word, which has a different duration from a sentence, etc.

About offsets:
TRFs can still be interpretable using the offset timings though; however, the main original analysis seems to be utilizing the offset times in a different, more confusing way. The authors still seem to be saying that only the peri-offset time of the EEG was analyzed at all, meaning the vast majority of the EEG trial durations do not factor into the main HM-LSTM response results whatsoever. The way the authors describe this does not seem to be present in any other literature, including the papers that they cite. Therefore, much more clarification on this issue is needed. If the authors mean that the regressors are simply time-locked to the EEG by aligning their offsets (rather than their onsets, because they have varying onsets or some such experimental design complexity), then this would be fine. But it does not seem to be what the authors want to say. This may be a miscommunication about the methods, or the authors may have actually only analyzed a small portion of the data. Either way, this should be clarified to be able to be interpretable.

Reviewer #2 (Public review):

This study presents a valuable finding on the neural encoding of speech in listeners with normal hearing and hearing impairment, uncovering marked differences in how attention to different levels of speech information is allocated, especially when having to selectively attend to one speaker while ignoring an irrelevant speaker. The results overall support the claims of the authors, although a more explicit behavioural task to demonstrate successful attention allocation would have strengthened the study. Importantly, the use of more "temporally continuous" analysis frameworks could have provided a better methodology to assess the entire time course of neural activity during speech listening. Despite these limitations, this interesting work will be useful to the hearing impairment and speech processing research community.

The study compares speech-in-quiet vs. multi-talker scenarios, allowing to assess within-participant the impact that the addition of a competing talker has on the neural tracking of speech. Moreover, the inclusion of a population with hearing loss is useful to disentangle the effects of attention orienting and hearing ability. The diagnosis of high-frequency hearing loss was done as part of the experimental procedure by professional audiologists, leading to a high control of the main contrast of interest for the experiment. Sample size was big, allowing to draw meaningful comparisons between the two populations.

An HM-LSTM model was employed to jointly extract speech features spanning from the stimulus acoustics to word-level and phrase-level information, represented by embeddings extracted at successive layers of the model. The model was specifically expanded to include lower level acoustic and phonetic information, reaching a good representation of all intermediate levels of speech.

Despite conveniently extracting all features jointly, the HM-LSTM model processes linguistic input sentence-by-sentence, and therefore only allows to assess the corresponding EEG data at sentence offset. If I understood correctly, while the sentence information extracted with the HM-LSTM reflects the entire sentence - in terms of its acoustic, phonetic and more abstract linguistic features - it only gives a condensed final representation of the sentence. As such, feature extraction with the HM-LSTM is not compatible with a continuous temporal mapping on the EEG signal, and this is the main reason behind the authors' decision to fit a regression at nine separate time points surrounding sentence offsets.

While valid and previously used in the literature, this methodology, in the particular context of this experiment, might be obscuring important attentional effects impacted by hearing-loss. By fitting a regression only around sentence-final speech representations, the method might be overlooking the more "online" speech processing dynamics, and only assessing the permanence of information at different speech levels at sentence offset. In other words, the acoustic attentional bias between Attended and Unattended speech might exist even in hearing-impaired participants but, due to a lower encoding or permanence of acoustic information in this population, it might only emerge when using methodologies with a higher temporal resolution, such as Temporal Response Functions (TRFs). If a univariate TRF fit simply on the continuous speech envelope did not show any attentional bias (different trial lengths should not be a problem for fitting TRFs), I would be entirely convinced of the result. For now, I am unsure on how to interpret this finding.

Despite my doubts on the appropriateness of condensed speech representations and single-point regression for acoustic features in particular, the current methodology allows the authors to explore their research questions, and the results support their conclusions.

This work presents an interesting finding on the limits of attentional bias in a cocktail-party scenario, suggesting that fundamentally different neural attentional filters are employed by listeners with high-frequency hearing loss, even in terms of the tracking of speech acoustics. Moreover, the rich dataset collected by the authors is a great contribution to open science and will offer opportunities for re-analysis.

Author response:

The following is the authors’ response to the original reviews

eLife Assessment

This valuable study investigates how hearing impairment affects neural encoding of speech, in particular the encoding of hierarchical linguistic information. The current analysis provides incomplete evidence that hearing impairment affects speech processing at multiple levels, since the novel analysis based on HM-LSTM needs further justification. The advantage of this method should also be further explained. The study can also benefit from building a stronger link between neural and behavioral data.

We sincerely thank the editors and reviewers for their detailed and constructive feedback.

We have revised the manuscript to address all of the reviewers’ comments and suggestions. The primary strength of our methods lies in the use of the HM-LSTM model, which simultaneously captures linguistic information at multiple levels, ranging from phonemes to sentences. As such, this model can be applied to other questions regarding hierarchical linguistic processing. We acknowledge that our current behavioral results from the intelligibility test may not fully differentiate between the perception of lower-level acoustic/phonetic information and higher-level meaning comprehension. However, it remains unclear what type of behavioral test would effectively address this distinction. We aim to xplore this connection further in future studies.

Public Reviews:

Reviewer #1 (Public Review):

The authors are attempting to use the internal workings of a language hierarchy model, comprising phonemes, syllables, words, phrases, and sentences, as regressors to predict EEG recorded during listening to speech. They also use standard acoustic features as regressors, such as the overall envelope and the envelopes in log-spaced frequency bands. This is valuable and timely research, including the attempt to show differences between normal-hearing and hearing-impaired people in these regards. I will start with a couple of broader questions/points, and then focus my comments on three aspects of this study: The HM-LSTM language model and its usage, the time windows of relevant EEG analysis, and the usage of ridge regression.

Firstly, as far as I can tell, the OSF repository of code, data, and stimuli is not accessible without requesting access. This needs to be changed so that reviewers and anybody who wants or needs to can access these materials.

It is my understanding that keeping the repository private during the review process and making them public after acceptance is standard practice. As far as I understand, although the OSF repository was private, anyone with the link should be able to access it. I have now made the repository public.

What is the quantification of model fit? Does it mean that you generate predicted EEG time series from deconvolved TRFs, and then give the R2 coefficient of determination between the actual EEG and predicted EEG constructed from the convolution of TRFs and regressors? Whether or not this is exactly right, it should be made more explicit.

Model fit was measured by spatiotemporal cluster permutation tests (Maris & Oostenveld, 2007) on the contrasts of the timecourses of the z-transformed coefficient of determination (R2). For instance, to assess whether words from the attended stimuli better predict EEG signals during the mixed speech compared to words from the unattended stimuli, we used the 150dimensional vectors corresponding to the word layer from our LSTM model for the attended and unattended stimuli as regressors. We then fit these regressors to the EEG signals at 9 time points (spanning -100 ms to 300 ms around the sentence offsets, with 50 ms intervals). We then conducted one-tailed two-sample t-tests to determine whether the differences in the contrasts of the R2 timecourses were statistically significant. Note that we did not perform TRF analyses. We have clarified this description in the “Spatiotemporal clustering analysis” section of the “Methods and Materials” on p.10 of the manuscript.

About the HM-LSTM:

• In the Methods paragraph about the HM-LSTM, a lot more detail is necessary to understand how you are using this model. Firstly, what do you mean that you "extended" it, and what was that procedure?

The original HM-LSTM model developed by Chung et al. (2017) consists of only two levels: the word level and the phrase level (Figure 1b from their paper). By “extending” the model, we mean that we expanded its architecture to include five levels: phoneme, syllable, word, phrase, and sentence. Since our input consists of phoneme embeddings, we cannot directly apply their model, so we trained our model on the WenetSpeech corpus (Zhang et al., 2021), which provides phoneme-level transcripts. We have added this clarification on p.4 of the manuscript.

• And generally, this is the model that produces most of the "features", or regressors, whichever word we like, for the TRF deconvolution and EEG prediction, correct?

Yes, we extracted the 2048-dimensional hidden layer activity from the model to represent features for each sentence in our speech stimuli at the phoneme, syllable, word, phrase and sentence levels. But we did not perform any TRF deconvolution, we fit these features (downsampled to 150-dimension using PCA) to the EEG signals at 9 timepoints around the offset of each sentence using ridge regression. We have now added a multivariate TRF (mTRF) analysis following Reviewer 3’s suggestions, and the results showed similar patterns to the current results (see Figure S2). We have added the clarification in the “Ridge regression at different time latencies” section of the “Methods and Materials” on p.10 of the manuscript.

Resutls from the mTRF analyses were added on p.7 of the manuscript.

• A lot more detail is necessary then, about what form these regressors take, and some example plots of the regressors alongside the sentences.

The linguistic regressors are just 5 150-dimensional vectors, each corresponding to one linguistic level, as shown in Figure 1B.

• Generally, it is necessary to know what these regressors look like compared to other similar language-related TRF and EEG/MEG prediction studies. Usually, in the case of e.g. Lalor lab papers or Simon lab papers, these regressors take the form of single-sample event markers, surrounded by zeros elsewhere. For example, a phoneme regressor might have a sample up at the onset of each phoneme, and a word onset regressor might have a sample up at the onset of each word, with zeros elsewhere in the regressor. A phoneme surprisal regressor might have a sample up at each phoneme onset, with the value of that sample corresponding to the rarity of that phoneme in common speech. Etc. Are these regressors like that? Or do they code for these 5 linguistic levels in some other way? Either way, much more description and plotting is necessary in order to compare the results here to others in the literature.

No, these regressors were not like that. They were 150-dimensional vectors (after PCA dimension reduction) extracted from the hidden layers of the HM-LSTM model. After training the model on the WenetSpeech corpus, we ran it on our speech stimuli and extracted representations from the five hidden layers to correspond to the five linguistic levels. As mentioned earlier, we did not perform TRF analyses; instead, we used ridge regression to predict EEG signals around the offset of each sentence, a method commonly employed in the literature (e.g., Caucheteux & King, 2022; Goldstein et al., 2022; Schmitt et al., 2021; Schrimpf et al., 2021). For instance, Goldstein et al. (2022) used word embeddings from GPT-2 to predict ECoG activity surrounding the onset of each word during naturalistic listening. We have included these literatures on p.3 in the manuscript, and the method is illustrated in Figure 1B.

• You say that the 5 regressors that are taken from the trained model's hidden layers do not have much correlation with each other. However, the highest correlations are between syllable and sentence (0.22), and syllable and word (0.17). It is necessary to give some reason and interpretation of these numbers. One would think the highest correlation might be between syllable and phoneme, but this one is almost zero. Why would the syllable and sentence regressors have such a relatively high correlation with each other, and what form do those regressors take such that this is the case?

All the regressors are represented as 2048-dimensional vectors derived from the hidden layers of the trained HM-LSTM model. We applied the trained model to all 284 sentences in our stimulus text, generating a set of 284 × 2048-dimensional vectors. Next, we performed Principal Component Analysis (PCA) on the 2048 dimensions and extracted the first 100 principal components (PCs), resulting in 284 × 100-dimensional vectors for each regressor. These 284 × 100 matrices were then flattened into 28,400-dimensional vectors. Subsequently, we computed the correlation matrix for the z-transformed 28,400-dimensional vectors of our five linguistic regressors. The code for this analysis, lstm_corr.py, can be found in our OSF repository. We have added a section “Correlation among linguistic features” in “Materials and Methods” on p.10 of the manuscript.

We consider the observed coefficients of 0.17 and 0.22 to be relatively low compared to prior model-brain alignment studies which report correlation coefficients above 0.5 for linguistic regressors (e.g., Gao et al., 2024; Sugimoto et al., 2024). In Chinese, a single syllable can also function as a word, potentially leading to higher correlations between regressors for syllables and words. However, we refrained from overinterpreting the results to suggest a higher correlation between syllable and sentence compared to syllable and word. A paired ttest of the syllable-word coefficients versus syllable-sentence coefficients across the 284 sentences revealed no significant difference (t(28399)=-3.96, p=1). We have incorporated this information into p.5 of the manuscript.

• If these regressors are something like the time series of zeros along with single sample event markers as described above, with the event marker samples indicating the onset of the relevant thing, then one would think e.g. the syllable regressor would be a subset of the phoneme regressor because the onset of every syllable is a phoneme. And the onset of every word is a syllable, etc.

All the regressors are aligned to 9 time points surrounding sentence offsets (-100 ms to 300 ms with a 50 ms interval). This is because all our regressors are taken from the HM-LSTM model, where the input is the phoneme representation of a sentence (e.g., “zh ə_4 y ie_3 j iəu_4 x iaŋ_4 sh uei_3 y ii_2 y aŋ_4”). For each unit in the sentence, the model generates five 2048dimensional vectors, each corresponding to the five linguistic levels of the entire sentence. We have added the clarification on p.11 of the manuscript.

For the time windows of analysis:

• I am very confused, because sometimes the times are relative to "sentence onset", which would mean the beginning of sentences, and sometimes they are relative to "sentence offset", which would mean the end of sentences. It seems to vary which is mentioned. Did you use sentence onsets, offsets, or both, and what is the motivation?

• If you used onsets, then the results at negative times would not seem to mean anything, because that would be during silence unless the stimulus sentences were all back to back with no gaps, which would also make that difficult to interpret.

• If you used offsets, then the results at positive times would not seem to mean anything, because that would be during silence after the sentence is done. Unless you want to interpret those as important brain activity after the stimuli are done, in which case a detailed discussion of this is warranted.

Thank you very much for pointing this out. All instances of “sentence onset” were typos and should be corrected to “sentence offset.” We chose offset because the regressors are derived from the hidden layer activity of our HM-LSTM model, which processes the entire sentence before generating outputs. We have now corrected all the typos. In continuous speech, there is no distinct silence period following sentence offsets. Additionally, lexical or phrasal processing typically occurs 200 ms after stimulus offsets (Bemis & Pylkkanen, 2011; Goldstein et al., 2022; Li et al., 2024; Li & Pylkkänen, 2021). Therefore, we included a 300 ms interval after sentence offsets in our analysis, as our regressors encompass linguistic levels up to the sentence level. We have added this motivation on p.11 of the manuscript.

• For the plots in the figures where the time windows and their regression outcomes are shown, it needs to be explicitly stated every time whether those time windows are relative to sentence onset, offset, or something else.

Completely agree and thank you very much for the suggestion. We have now added this information on Figure 4-6.

• Whether the running correlations are relative to sentence onset or offset, the fact that you can have numbers outside of the time of the sentence (negative times for onset, or positive times for offset) is highly confusing. Why would the regressors have values outside of the sentence, meaning before or after the sentence/utterance? In order to get the running correlations, you presumably had the regressor convolved with the TRF/impulse response to get the predicted EEG first. In order to get running correlation values outside the sentence to correlate with the EEG, you would have to have regressor values at those time points, correct? How does this work?

As mentioned earlier, we did not perform TRF analyses or convolve the regressors. Instead, we conducted regression analyses at each of the 9 time points surrounding the sentence offsets, following standard methods commonly used in model-brain alignment studies (e.g., Gao et al., 2024; Goldstein et al., 2022). The time window of -100 to 300 ms was selected based on prior findings that lexical and phrasal processing typically occurs 200–300 ms after word offsets (Bemis & Pylkkanen, 2011; Goldstein et al., 2022; Li et al., 2024; Li & Pylkkänen, 2021). Additionally, we included the -100 to 200 ms time period in our analysis to examine phoneme and syllable level processing (cf. Gwilliams et al., 2022). We have added the clarification on p. of the manuscript.

• In general, it seems arbitrary to choose sentence onset or offset, especially if the comparison is the correlation between predicted and actual EEG over the course of a sentence, with each regressor. What is going on with these correlations during the middle of the sentences, for example? In ridge regression TRF techniques for EEG/MEG, the relevant measure is often the overall correlation between the predicted and actual, calculated over a longer period of time, maybe the entire experiment. Here, you have calculated a running comparison between predicted and actual, and thus the time windows you choose to actually analyze can seem highly cherry-picked, because this means that most of the data is not actually analyzed.

The rationale for choosing sentence offsets instead of onsets is that we are aligning the HM-LSTM model’s activity with EEG responses, and the input to the model consists of phoneme representations of the entire sentence at one time. In other words, the model needs to process the whole sentence before generating representations at each linguistic level. Therefore, the corresponding EEG responses should also align with the sentence offsets, occurring after participants have seen the complete sentence. The ridge regression followed the common practice in model-brain alignment studies (e.g., Gao et al., 2024; Goldstein et al., 2022; Huth et al., 2016; Schmitt et al., 2021; Schrimpf et al., 2021), and the time window is not cherrypicked but based on prior literature reporting lexical and sublexical processing at these time period (e.g., Bemis & Pylkkanen, 2011; Goldstein et al., 2022; Gwilliams et al., 2022; Li et al., 2024; Li & Pylkkänen, 2021).

• In figures 5 and 6, some of the time window portions that are highlighted as significant between the two lines have the lines intersecting. This looks like, even though you have found that the two lines are significantly different during that period of time, the difference between those lines is not of a constant sign, even during that short period. For instance, in figure 5, for the syllable feature, the period of 0 - 200 ms is significantly different between the two populations, correct? But between 0 and 50, normal-hearing are higher, between 50 and 150, hearing-impaired are higher, and between 150 and 200, normal-hearing are higher again, correct? But somehow they still end up significantly different overall between 0 and 200 ms. More explanation of occurrences like these is needed.

The intersecting lines in Figures 5 and represent the significant time windows for withingroup comparisons (i.e., significant model fit compared to 0). They do not depict betweengroup comparisons, as no significant contrasts were found between the groups. For example, in Figure 1, the significant time windows for the acoustic models are shown separately for the hearing-impaired and normal-hearing groups. No significant differences were observed, as indicated by the sensor topography. We have now clarified this point in the captions for Figures 5 and 6.

Using ridge regression:

• What software package(s) and procedure(s) were specifically done to accomplish this? If this is ridge regression and not just ordinary least squares, then there was at least one non-zero regularization parameter in the process. What was it, how did it figure in the modeling and analysis, etc.?

The ridge regression was performed using customary python codes, making heavy use of the sklearn (v1.12.0) package. We used ridge regression instead of ordinary least squares regression because all our linguistic regressors are 150-dimensional dense vectors, and our acoustic regressors are 130-dimension vectors (see “Acoustic features of the speech stimuli” in “Materials and Methods”). We kept the default regularization parameter (i.e., 1). This ridge regression methods is commonly used in model-brain alignment studies, where the regressors are high-dimensional vectors taken from language models (e.g., Gao et al., 2024; Goldstein et al., 2022; Huth et al., 2016; Schmitt et al., 2021; Schrimpf et al., 2021). The code ridge_lstm.py can be found in our OSF repository, and we have added the more detailed description on p.11 of the manuscript.

• It sounds like the regressors are the hidden layer activations, which you reduced from 2,048 to 150 non-acoustic, or linguistic, regressors, per linguistic level, correct? So you have 150 regressors, for each of 5 linguistic levels. These regressors collectively contribute to the deconvolution and EEG prediction from the resulting TRFs, correct? This sounds like a lot of overfitting. How much correlation is there from one of these 150 regressors to the next? Elsewhere, it sounds like you end up with only one regressor for each of the 5 linguistic levels. So these aspects need to be clarified.

• For these regressors, you are comparing the "regression outcomes" for different conditions; "regression outcomes" are the R2 between predicted and actual EEG, which is the coefficient of determination, correct? If this is R2, how is it that you have some negative numbers in some of the plots? R2 should be only positive, between 0 and 1.

Yes we reduced 2048-dimensional vectors for each of the 5 linguistic levels to 150 using PCA, mainly for saving computational resources. We used ridge regression, following the standard practice in the field (e.g., Gao et al., 2024; Goldstein et al., 2022; Huth et al., 2016; Schmitt et al., 2021; Schrimpf et al., 2021).

Yes, the regression outcomes are the R2 values representing the fit between the predicted and actual EEG data. However, we reported normalized R2 values which are ztransformed in the plots. All our spatiotemporal cluster permutation analyses were conducted using the z-transformed R2 values. We have added this clarification both in the figure captions and on p.11 of the manuscript. As a side note, R2 values can be negative because they are not the square of a correlation coefficient. Rather, R2 compares the fit of the chosen model to that of a horizontal straight line (the null hypothesis). If the chosen model fits the data worse than the horizontal line, then R2 value becomes negative: https://www.graphpad.com/support/faq/how-can-rsup2sup-be-negative

Reviewer #2 (Public Review):

This study compares neural responses to speech in normal-hearing and hearing-impaired listeners, investigating how different levels of the linguistic hierarchy are impacted across the two cohorts, both in a single-talker and multi-talker listening scenario. It finds that, while normal-hearing listeners have a comparable cortical encoding of speech-in-quiet and attended speech from a multi-talker mixture, participants with hearing impairment instead show a reduced cortical encoding of speech when it is presented in a competing listening scenario. When looking across the different levels of the speech processing hierarchy in the multi-talker condition, normal-hearing participants show a greater cortical encoding of the attended compared to the unattended stream in all speech processing layers - from acoustics to sentencelevel information. Hearing-impaired listeners, on the other hand, only have increased cortical responses to the attended stream for the word and phrase levels, while all other levels do not differ between attended and unattended streams.

The methods for modelling the hierarchy of speech features (HM-LSTM) and the relationship between brain responses and specific speech features (ridge-regression) are appropriate for the research question, with some caveats on the experimental procedure. This work offers an interesting insight into the neural encoding of multi-talker speech in listeners with hearing impairment, and it represents a useful contribution towards understanding speech perception in cocktail-party scenarios across different hearing abilities. While the conclusions are overall supported by the data, there are limitations and certain aspects that require further clarification.

(1) In the multi-talker section of the experiment, participants were instructed to selectively attend to the male or the female talker, and to rate the intelligibility, but they did not have to perform any behavioural task (e.g., comprehension questions, word detection or repetition), which could have demonstrated at least an attempt to comply with the task instructions. As such, it is difficult to determine whether the lack of increased cortical encoding of Attended vs. Unattended speech across many speech features in hearing-impaired listeners is due to a different attentional strategy, which might be more oriented at "getting the gist" of the story (as the increased tracking of only word and phrase levels might suggest), or instead it is due to hearing-impaired listeners completely disengaging from the task and tuning back in for selected key-words or word combinations. Especially the lack of Attended vs. Unattended cortical benefit at the level of acoustics is puzzling and might indicate difficulties in performing the task. I think this caveat is important and should be highlighted in the Discussion section. RE: Thank you very much for the suggestion. We admit that the hearing-impaired listeners might adopt different attentional strategies or potentially disengage from the task due to comprehension difficulties. However, we would like to emphasize that our hearing-impaired participants have extended high-frequency (EHF) hearing loss, with impairment only at frequencies above 8 kHz. Their condition is likely not severe enough to cause them to adopt a markedly different attentional strategy for this task. Moreover, it is possible that our normalhearing listeners may also adopt varying attentional strategies, yet the comparison still revealed notable differences.We have added the caveat in the Discussion section on p.8 of the manuscript.

(2) In the EEG recording and preprocessing section, you state that the EEG was filtered between 0.1Hz and 45Hz. Why did you choose this very broadband frequency range? In the literature, speech responses are robustly identified between 0.5Hz/1Hz and 8Hz. Would these results emerge using a narrower and lower frequency band? Considering the goal of your study, it might also be interesting to run your analysis pipeline on conventional frequency bands, such as Delta and Theta, since you are looking into the processing of information at different temporal scales.

Indeed, we have decomposed the epoched EEG time series for each section into six classic frequency bands components (delta 1–3 Hz, theta 4–7 Hz, alpha 8–12 Hz, beta 12–20 Hz, gamma 30–45 Hz) by convolving the data with complex Morlet wavelets as implemented in MNE-Python (version 0.24.0). The number of cycles in the Morlet wavelets was set to frequency/4 for each frequency bin. The power values for each time point and frequency bin were obtained by taking the square root of the resulting time-frequency coefficients. These power values were normalized to reflect relative changes (expressed in dB) with respect to the 500 ms pre-stimulus baseline. This yielded a power value for each time point and frequency bin for each section. We specifically examined the delta and theta bands, and computed the correlation between the regression outcome (R2 in the shape of number of subject * sensor * time were flattened for computing correlation) for the five linguistic predictors from these bands and those obtained using data from all frequency bands. The results showed high correlation coefficients (see the correlation matrix in Supplementary Figures S2 for the attended and unattended speech). Therefore, we opted to use the epoched EEG data from all frequency bands for our analyses. We have added this clarification in the Results section on p.5 and the “EEG recording and preprocessing” section in “Materials and Methods” on p.11 of the manuscript.

(3) A paragraph with more information on the HM-LSTM would be useful to understand the model used without relying on the Chung et al. (2017) paper. In particular, I think the updating mechanism of the model should be clarified. It would also be interesting to modify the updating factor of the model, along the lines of Schmitt et al. (2021), to assess whether a HM-LSTM with faster or slower updates can better describe the neural activity of hearing-impaired listeners. That is, perhaps the difference between hearing-impaired and normal-hearing participants lies in the temporal dynamics, and not necessarily in a completely different attentional strategy (or disengagement from the stimuli, as I mentioned above).

Thank you for the suggestion. We have added more details on our HM-LSTM model on p.10 “Hierarchical multiscale LSTM model” in “Materials and Methods”: Our HM-LSTM model consists of 4 layers, at each layer, the model implements a COPY or UPDATE operation at each time step t. The COPY operation maintains the current cell state of without any changes until it receives a summarized input from the lower layer. The UPDATE operation occurs when a linguistic boundary is detected in the layer below, but no boundary was detected at the previous time step t-1. In this case, the cell updates its summary representation, similar to standard RNNs. We agree that exploring modifications to the model’s updating factor would be an interesting direction. However, since we have already observed contrasts between normal-hearing and hearing-impaired listeners using the current model’s update parameters, we believe discussing additional hypotheses would overextend the scope of this paper.

(4) When explaining how you extracted phoneme information, you mention that "the inputs to the model were the vector representations of the phonemes". It is not clear to me whether you extracted specific phonetic features (e.g., "p" sound vs. "b" sound), or simply the phoneme onsets. Could you clarify this point in the text, please?

The model inputs were individual phonemes from two sentences, each transformed into a 1024-dimensional vector using a simple lookup table. This lookup table stores embeddings for a fixed dictionary of all unique phonemes in Chinese. This approach is a foundational technique in many advanced NLP models, enabling the representation of discrete input symbols in a continuous vector space. We have added this clarification on p.10 of the manuscript.

Reviewer #3 (Public Review):

Summary:

The authors aimed to investigate how the brain processes different linguistic units (from phonemes to sentences) in challenging listening conditions, such as multi-talker environments, and how this processing differs between individuals with normal hearing and those with hearing impairments. Using a hierarchical language model and EEG data, they sought to understand the neural underpinnings of speech comprehension at various temporal scales and identify specific challenges that hearing-impaired listeners face in noisy settings.

Strengths:

Overall, the combination of computational modeling, detailed EEG analysis, and comprehensive experimental design thoroughly investigates the neural mechanisms underlying speech comprehension in complex auditory environments.

The use of a hierarchical language model (HM-LSTM) offers a data-driven approach to dissect and analyze linguistic information at multiple temporal scales (phoneme, syllable, word, phrase, and sentence). This model allows for a comprehensive neural encoding examination of how different levels of linguistic processing are represented in the brain.

The study includes both single-talker and multi-talker conditions, as well as participants with normal hearing and those with hearing impairments. This design provides a robust framework for comparing neural processing across different listening scenarios and groups.

Weaknesses:

The analyses heavily rely on one specific computational model, which limits the robustness of the findings. The use of a single DNN-based hierarchical model to represent linguistic information, while innovative, may not capture the full range of neural coding present in different populations. A low-accuracy regression model-fit does not necessarily indicate the absence of neural coding for a specific type of information. The DNN model represents information in a manner constrained by its architecture and training objectives, which might fit one population better than another without proving the non-existence of such information in the other group. To address this limitation, the authors should consider evaluating alternative models and methods. For example, directly using spectrograms, discrete phoneme/syllable/word coding as features, and performing feature-based temporal response function (TRF) analysis could serve as valuable baseline models. This approach would provide a more comprehensive evaluation of the neural encoding of linguistic information.

Our acoustic features are indeed direct the broadband envelopes and the log-mel spectrograms of the speech streams. The amplitude envelope of the speech signal was extracted using the Hilbert transform. The 129-dimension spectrogram and 1-dimension envelope were concatenated to form a 130-dimension acoustic feature at every 10 ms of the speech stimuli. Given the duration of our EEG recordings, which span over 10 minutes, conducting multivariate TRF (mTRF) analysis with such high-dimensional predictors was not feasible. Instead, we used ridge regression to predict EEG responses across 9 temporal latencies, ranging from -100 ms to +300 ms, with additional 50 ms latencies surrounding sentence offsets. To evaluate the model's performance, we extracted the R2 values at each latency, providing a temporal profile of regression performance over the analyzed time period. This approach is conceptually similar to TRF analysis.

We agree that including baseline models for the linguistic features is important, and we have now added results from mTRF analysis using phoneme, syllable, word, phrase, and sentence rates as discrete predictors (i.e., marking a value of 1 at each unit boundary offset). Our EEG data spans the entire 10-minute duration for each condition, sampled at 10-ms intervals. The TRF results for our main comparison—attended versus unattended conditions— showed similar patterns to those observed using features from our HM-LSTM model. At the phoneme and syllable levels, normal-hearing listeners showed marginally significantly higher TRF weights for attended speech compared to unattended speech at approximately -80 to 150 ms after phoneme offsets (t=2.75, Cohen’s d=0.87, p=0.057), and 120 to 210 ms after syllable offsets (t=3.96, Cohen’s d=0.73d = 0.73, p=0.083). At the word and phrase levels, normalhearing listeners exhibited significantly higher TRF weights for attended speech compared to unattended speech at 190 to 290 ms after word offsets (t=4, Cohen’s d=1.13, p=0.049), and around 120 to 290 ms after phrase offsets (t=5.27, Cohen’s d=1.09, p=0.045). For hearing-impaired listeners, marginally significant effects were observed at 190 to 290 ms after word offsets (t=1.54, Cohen’s d=0.6, p=0.059), and 180 to 290 ms after phrase offsets (t=3.63, Cohen’s d=0.89, p=0.09). These results have been added on p.7 of the manuscript, and the corresponding figure is included as Supplementary F2.

It is not entirely clear if the DNN model used in this study effectively serves the authors' goal of capturing different linguistic information at various layers. Specifically, the results presented in Figure 3C are somewhat confusing. While the phonemes are labeled, the syllables, words, phrases, and sentences are not, making it difficult to interpret how the model distinguishes between these levels of linguistic information. The claim that "Hidden-layer activity for samevowel sentences exhibited much more similar distributions at the phoneme and syllable levels compared to those at the word, phrase and sentence levels" is not convincingly supported by the provided visualizations. To strengthen their argument, the authors should use more quantified metrics to demonstrate that the model indeed captures phrase, word, syllable, and phoneme information at different layers. This is a crucial prerequisite for the subsequent analyses and claims about the hierarchical processing of linguistic information in the brain.

Quantitative measures such as mutual information, clustering metrics, or decoding accuracy for each linguistic level could provide clearer evidence of the model's effectiveness in this regard.

In Figure 3C, we used color-coding to represent the activity of five hidden layers after dimensionality reduction. Each dot on the plot corresponds to one test sentence. Only phonemes are labeled because each syllable in our test sentences contains the same vowels (see Table S1). The results demonstrate that the phoneme layer effectively distinguishes different phonemes, while the higher linguistic layers do not. We believe these findings provide evidence that different layers capture distinct linguistic information. Additionally, we computed the correlation coefficients between each pair of linguistic predictors, as shown in Figure 3B. We think this analysis serves a similar purpose to computing the mutual information between pairs of hidden-layer activities for our constructed sentences. Furthermore, the mTRF results based on rate models of the linguistic features we presented earlier align closely with the regression results using the hidden-layer activity from our HM-LSTM model. This further supports the conclusion that our model successfully captures relevant information across these linguistic levels. We have added the clarification on p.5 of the manuscript.

The formulation of the regression analysis is somewhat unclear. The choice of sentence offsets as the anchor point for the temporal analysis, and the focus on the [-100ms, +300ms] interval, needs further justification. Since EEG measures underlying neural activity in near real-time, it is expected that lower-level acoustic information, which is relatively transient, such as phonemes and syllables, would be distributed throughout the time course of the entire sentence. It is not evident if this limited time window effectively captures the neural responses to the entire sentence, especially for lower-level linguistic features. A more comprehensive analysis covering the entire time course of the sentence, or at least a longer temporal window, would provide a clearer understanding of how different linguistic units are processed over time. Additionally, explaining the rationale behind choosing this specific time window and how it aligns with the temporal dynamics of speech processing would enhance the clarity and validity of the regression analysis.

Thank you for pointing this out. We chose this time window as lexical or phrasal processing typically occurs 200 ms after stimulus offsets (Bemis & Pylkkanen, 2011; Goldstein et al., 2022; Li et al., 2024; Li & Pylkkänen, 2021). Additionally, we included the -100 to 200 ms time period in our analysis to examine phoneme and syllable level processing (e.g., Gwilliams et al., 2022). Using the entire sentence duration was not feasible, as the sentences in the stimuli vary in length, making statistical analysis challenging. Additionally, since the stimuli consist of continuous speech, extending the time window would risk including linguistic units from subsequent sentences. This would introduce ambiguity as to whether the EEG responses correspond to the current or the following sentence. We have added this clarification on p.12 of the manuscript.

Recommendations for the authors:

Reviewer #1 (Recommendations For The Authors):

As I mentioned, I think the OSF repo needs to be changed to give anyone access. I would recommend pursuing the lines of thought I mentioned in the public review to make this study complete and to allow it to fit into the already existing literature to facilitate comparisons.

Yes the OSF folder is now public. We have made revisions following all reviewers’ suggestions.

There are some typos in figure labels, e.g. 2B.

Thank you for pointing it out! We have now revised the typo in Figure 2B.

Reviewer #2 (Recommendations For The Authors):

(1) I was able to access all of the audio files and code for the study, but no EEG data was shared in the OSF repository. Unless there is some ethical and/or legal constraint, my understanding of eLife's policy is that the neural data should be made publicly available as well.

The preprocessed EEG data in .npy format in the OSF repository.

(2) The line-plots in Figures 4B,5B, and 6B have very similar colours. They would be easier to interpret if you changed the line appearance as well as the colours. E.g., dotted line for hearingimpaired listeners, thick line for normal-hearing.

Thank you for the suggestion! We have now used thicker lines for normal-impaired listeners in all our line plots.

Reviewer #3 (Recommendations For The Authors):

(1) The authors may consider presenting raw event-related potentials (ERPs) or spatiotemporal response profiles before delving into the more complex regression encoding analysis. This would provide a clearer foundational understanding of the neural activity patterns. For example, it is not clear if the main claims, such as the neural activity in the normal-hearing group encoding phonetic information in attended speech better than in unattended speech, are directly observable. Showing ERP differences or spatiotemporal response pattern differences could support these claims more straightforwardly. Additionally, training pattern classifiers to test if different levels of information can be decoded from EEG activity in specific groups could provide further validation of the findings.

We have now included results from more traditional mTRF analyses using phoneme, syllable, word, phrase, and sentence rates as baseline models (see p.7 of the manuscript and Figure S3). The results show similar patterns to those observed in our current analyses. While we agree that classification analyses would be very interesting, our regression analyses have already demonstrated distinct EEG patterns for each linguistic level. Consequently, classification analyses would likely yield similar results unless a different method for representing linguistic information at these levels is employed. To the best of our knowledge, no other computational model currently exists that can simultaneously represent these linguistic levels.

(2) Is there any behavioral metric suggesting that these hearing-impaired participants do have deficits in comprehending long sentences? The self-rated intelligibility is useful, but cannot fully distinguish between perceiving lower-level phonetic information vs longer sentence comprehension.

In the current study, we included only self-rated intelligibility tests. We acknowledge that this approach might not fully distinguish between the perception of lower-level phonetic information and higher-level sentence comprehension. However, it remains unclear what type of behavioral test would effectively address this distinction. Furthermore, our primary aim was to use the behavioral results to demonstrate that our hearing-impaired listeners experienced speech comprehension difficulties in multi-talker environments, while relying on the EEG data to investigate comprehension challenges at various linguistic levels.

Minor:

(1) Page 2, second line in Introduction, "Phonemes occur over ..." should be lowercase.

According to APA format, the first word after the colon is capitalized if it begins a complete sentence (https://blog.apastyle.org/apastyle/2011/06/capitalization-after-colons.html). Here

the sentence is a complete sentence so we used uppercase for “phonemes”.

(2) Page 8, second paragraph "...-100ms to 100ms relative to sentence onsets", should it be onsets or offsets?

This is typo and it should be offsets. We have now revised it.

References

Bemis, D. K., & Pylkkanen, L. (2011). Simple composition: An MEG investigation into the comprehension of minimal linguistic phrases. Journal of Neuroscience, 31(8), 2801– 2814.

Gao, C., Li, J., Chen, J., & Huang, S. (2024). Measuring meaning composition in the human brain with composition scores from large language models. In L.-W. Ku, A. Martins, & V. Srikumar (Eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 11295–11308). Association for Computational Linguistics.

Goldstein, A., Zada, Z., Buchnik, E., Schain, M., Price, A., Aubrey, B., Nastase, S. A., Feder, A., Emanuel, D., Cohen, A., Jansen, A., Gazula, H., Choe, G., Rao, A., Kim, C., Casto, C., Fanda, L., Doyle, W., Friedman, D., … Hasson, U. (2022). Shared computational principles for language processing in humans and deep language models. Nature Neuroscience, 25(3), Article 3.

Gwilliams, L., King, J.-R., Marantz, A., & Poeppel, D. (2022). Neural dynamics of phoneme sequences reveal position-invariant code for content and order. Nature Communications, 13(1), Article 1.

Huth, A. G., de Heer, W. A., Griffiths, T. L., Theunissen, F. E., & Gallant, J. L. (2016). Natural speech reveals the semantic maps that tile human cerebral cortex. Nature, 532(7600), 453–458.

Li, J., Lai, M., & Pylkkänen, L. (2024). Semantic composition in experimental and naturalistic paradigms. Imaging Neuroscience, 2, 1–17.

Li, J., & Pylkkänen, L. (2021). Disentangling semantic composition and semantic association in the left temporal lobe. Journal of Neuroscience, 41(30), 6526–6538.

Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177–190.

Schmitt, L.-M., Erb, J., Tune, S., Rysop, A. U., Hartwigsen, G., & Obleser, J. (2021). Predicting speech from a cortical hierarchy of event-based time scales. Science Advances, 7(49), eabi6070.

Schrimpf, M., Blank, I. A., Tuckute, G., Kauf, C., Hosseini, E. A., Kanwisher, N., Tenenbaum, J. B., & Fedorenko, E. (2021). The neural architecture of language: Integrative modeling converges on predictive processing. Proceedings of the National Academy of Sciences, 118(45), e2105646118.

Sugimoto, Y., Yoshida, R., Jeong, H., Koizumi, M., Brennan, J. R., & Oseki, Y. (2024). Localizing Syntactic Composition with Left-Corner Recurrent Neural Network Grammars. Neurobiology of Language, 5(1), 201–224.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation