The N-terminal TPR domain restricts SpAGS localization and function at the vegetal cortex.
A, Design of SpAGS-GFP N-terminal deletion constructs used in this study. TPR motifs are marked in blue, and GL motifs are in orange. B, Representative 2D-projection images of the embryo injected with AGS-3F and 2x-mCherry-EMTB, exhibiting vegetal (right panel, arrowhead) and uniform (left panel, arrow) cortical localization. The magnified images below each panel demonstrate how to measure the cortical and non-cortical mean intensities using ImageJ, as depicted in the corresponding graph (C). Embryos were injected with 0.15-0.3μg/μl stock of SpAGS-GFP mRNA and 0.5μg/μl stock of 2x-mCherry-EMTB mRNA. Z-stack images were taken at 1μm intervals to cover a layer of the embryo. C, % of the embryos with vegetal cortical localization of SpAGS (left) and the ratio of the cortical-to-non-cortical mean intensity (right) at 16∼32-cell embryos. Statistical analysis was performed against Full AGS by One-Way ANOVA. D, Representative 2D-projection confocal image of a 16-cell stage embryo injected with AGS-1F. The largest cell (macromere) and the smallest cell (micromere) diameters were measured using ImageJ. Z-stack images were taken at 1μm intervals to cover a layer of the embryo. E, The diameter ratio of the smallest cell (micromere-like cell) over the largest cell (macromere-like cell) was quantified for the embryos injected with the SpAGS mutants or EMTB-only (control). F, % of the embryos forming micromere-like cells was scored for each SpAGS mutant and EMTB-only (control). “Micromere formation” is defined as the formation of a group of four cells that are smaller in size and made through a vertical cell division at the vegetal pole at the 16-cell stage. Since none of the AGS-3F-injected embryos formed normal micromeres, “micromere-like cells” were counted based on their vertical cell division, not relative to their size. Statistical analysis was performed against Control by One-Way ANOVA. G-H Brightfield images show the representative phenotypes scored in the corresponding graph (H) at 2 dpf. We categorized embryos into three groups, namely, “full development,” with embryos reaching the pluteus stage with complete gut formation and skeleton; “delayed development,” with some gastrulation but no proper skeleton; and “failed gastrulation.” As many of the abnormal-looking embryos fell into the median of the latter two categories, we scored only the embryos reaching full development in the graph. Control represents embryos injected with dye only. Statistical analysis was performed against Control by One-Way ANOVA. I, Single Z-slice confocal imaging was used to focus on the vegetal cortex. Embryos were stained with AGS (orange) and Gɑi (green) antibodies. White arrows and arrowheads indicate the signals at the vegetal cortex and ectopic cortical signals, respectively. Images represent over 80% of the embryos observed (n=30 or larger) per group. n indicates the total number of embryos scored. * represents p-value < 0.05, ** p-value < 0.01, and **** p-value <0.0001. Each experiment was performed at least three independent times. Error bars represent standard error. Scale bars=10μm.