Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAnnalisa ScimemiUniversity at Albany, State University of New York, Albany, United States of America
- Senior EditorPanayiota PoiraziFORTH Institute of Molecular Biology and Biotechnology, Heraklion, Greece
Reviewer #1 (Public review):
The manuscript by Griesius et al. addresses the dendritic integration of synaptic input in cortical GABAergic interneurons (INs). Dendritic properties, passive and active, of principal cells have been extensively characterized, but much less is known about the dendrites of INs. The limited information is particularly relevant in view of the high morphological and physiological diversity of IN types. The few studies that investigated IN dendrites focused on parvalbumin-expressing INs. In fact, in a previous study, the authors examined dendritic properties of PV INs, and found supralinear dendritic integration in basal, but not in apical dendrites (Cornford et al., 2019 eLife).
In the present study, complementary to the prior work, the authors investigate whether dendrite-targeting IN types, NDNF-expressing neurogliaform cells, and somatostatin(SOM)-expressing O-LM neurons, display similar active integrative properties by combining clustered glutamate-uncaging and pharmacological manipulations with electrophysiological recording and calcium imaging from genetically identified IN types in mouse acute hippocampal slices.
The main findings are that NDNF IN dendrites show strong supralinear summation of spatially- and temporally-clustered EPSPs, which is changed into sublinear behavior by bath application of NMDA receptor antagonists, but not by Na+-channel blockers. L-type calcium channel blockers abolished the supralinear behavior associated calcium transients but had no or only weak effect on EPSP summation. SOM IN dendrites showed similar, albeit weaker NMDA-dependent supralinear summation, but no supralinear calcium transients were detected in these INs. In summary, the study demonstrates that different IN types are endowed with active dendritic integrative mechanisms, but show qualitative and quantitative divergence in these mechanisms.
While the research is conceptionally not novel, it constitutes an important incremental gain in our understanding of the functional diversity of GABAergic INs. In view of the central roles of IN types in network dynamics and information processing in the cortex, results and conclusions are of interest to the broader neuroscience community.
The experiments are well designed, and closely follow the approach from the previous publication in parts, enabling direct comparison of the results obtained from the different IN types. The data is convincing and the conclusions are well-supported, and the manuscript is very well-written.
I see only a few open questions and some inconsistencies in the presentation of the data in the figures (see details below).
Reviewer #2 (Public review):
Summary:
Griesius et al. investigate the dendritic integration properties of two types of inhibitory interneurons in the hippocampus: those that express NDNF+ and those that express somatostatin. They found that both neurons showed supralinear synaptic integration in the dendrites, blocked by NMDA receptor blockers but not by blockers of Na+ channels. These experiments are critically overdue and very important because knowing how inhibitory neurons are engaged by excitatory synaptic input has important implications for all theories involving these inhibitory neurons.
Strengths:
(1) Determined the dendritic integration properties of two fundamental types of inhibitory interneurons.
(2) Convincing demonstration that supra-threshold integration in both cell types depends on NMDA receptors but not on Na+ channels.
Weaknesses:
It is unknown whether highly clustered synaptic input, as used in this study (and several previous studies), occurs physiologically.
Reviewer #3 (Public review):
Summary:
The authors study the temporal summation of caged EPSPs in dendrite-targeting hippocampal CA1 interneurons. There are some descriptive data presented, indicating non-linear summation, which seems to be larger in dendrites of NDNF expressing neurogliaform cells versus OLM cells. However, the underlying mechanisms are largely unclear.
Strengths:
Focal 2-photon uncaging of glutamate is a nice and detailed method to study temporal summation of small potentials in dendritic segments.
Weaknesses:
(1) NMDA-receptor signaling in NDNF-IN. The authors nicely show that temporal summation in dendrites of NDNF-INs is to a certain extent non-linear. However, this non-linearity varies massively from cell to cell (or dendrite to dendrite) from 0% up to 400% (Figure S2). The reason for this variability is totally unclear. Pharmacology with AP5 hints towards a contribution of NMDA receptors. However, the authors claim that the non-linearity is not dependent on EPSP amplitude (Figure S2), which should be the case if NMDA-receptors are involved. Unfortunately, there are no voltage-clamp data of NMDA currents similar to the previous study. This would help to see whether NMDA-receptor contribution varies from synapse to synapse to generate the observed variability? Furthermore, the NMDA- and AMPA-currents would help to compare NDNF with the previously characterized PV cells and would help to contribute to our understanding of interneuron function.
(2) Sublinear summation in NDNF-INs. In the presence of AP5, the temporal summation of caged EPSPs is sublinear. That is potentially interesting. The authors claim that this might be dependent on the diameter of dendrites. Many voltage-gated channels can mediate such things as well. To conclude the contribution of dendritic diameter, it would be helpful to at least plot the extent of sublinearity in single NDNF dendrites versus the dendritic diameter. Otherwise, this statement should be deleted.
(3) Nonlinear EPSP summation in OLM-IN. The authors do similar experiments in dendrite-targeting OLM-INs and show that the non-linear summation is smaller than in NDNF cells. The reason for this remains unclear. The authors claim that this is due to the larger dendritic diameter in OLM cells. However, there is no analysis. The minimum would be to correlate non-linearity with dendritic diameter in OLM-cells. Very likely there is an important role of synapse density and glutamate receptor density, which was shown to be very low in proximal dendrites of OLM cells and strongly increase with distance (Guirado et al. 2014, Cerebral Cortex 24:3014-24, Gramuntell et al. 2021, Front Aging Neurosci 13:782737). Therefore, the authors should perform a set of experiments in more distal dendrites of OLM cells with diameters similar to the diameters of the NDNF cells. Even better would be if the authors would quantify synapse density by counting spines and show how this density compares with non-linearity in the analyzed NDNF and OLM dendrites.
(4) NMDA in OLM. Similar to the NDNF cells, the authors claim the involvement of NMDA receptors in OLM cells. Again there seems to be no dependence on EPSP amplitude, which is not understandable at this point (Figure S3). Even more remarkable is the fact that the authors claim that there is no dendritic calcium increase after activation of NMDA receptors. Similar to NDNF-cell analysis there are no NMDA currents in OLMs. Unfortunately, even no calcium imaging experiments were shown. Why? Are there calcium-impermeable NNDA receptors in OLM cells? To understand this phenomenon the minimum is to show some physiological signature of NMDA-receptors, for example, voltage-clamp currents. Furthermore, it would be helpful to systematically vary stimulus intensity to see some calcium signals with larger stimulation. In case there is still no calcium signal, it would be helpful to measure reversal potentials with different ion compositions to characterize the potentially 'Ca2+ impermeable' voltage-dependent NMDA receptors in OLM cells.