Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorWenying ShouUniversity College London, London, United Kingdom
- Senior EditorAlan MosesUniversity of Toronto, Toronto, Canada
Reviewer #1 (Public review):
Summary
The authors determine the phylogenetic relation of the roughly two dozen wtf elements of 21 S. pombe isolates and show that none of them in the original S. pombe are essential for robust mitotic growth. It would be interesting to test their meiotic function by simply crossing each deletion mutant with the parent and analyzing spores for non-Mendelian inheritance. If this has been reported already, that information should be added to the manuscript. If not, I suggest the authors do these simple experiments and add this information.
Strengths:
The most interesting data (Figure 4) show that one recombinant (wtfC4) between wtf18 and wtf23 produces in mitotic growth a poison counteracted by its own antidote but not by the parental antidotes. Again, it would be interesting to test this recombinant in a more natural setting - meiosis between it and each of the parents.
Weaknesses:
In the opinion of this reviewer, some minor rewriting is needed.
Reviewer #2 (Public review):
Summary:
This important study provides a mechanism that can explain the rapid diversification of poison-antidote pairs (wtf genes) in fission yeast: recombination between existing genes.
Strengths:
The authors analyzed the diversity of wtf in S. pombe strains, and found pervasive copy number variations. They further detected signals of recurrent recombination in wtf genes. To address whether recombination can generate novel wtf genes, the authors performed artificial recombination between existing wft genes, and showed that indeed a new wtf can be generated: the poison cannot be detoxified by the antidotes encoded by parental wtf genes but can be detoxified by own antidote.
Weaknesses:
The study can benefit from demonstrating that the novel poison-antidote constructed by the authors can serve as a meiotic driver.
Reviewer #3 (Public review):
Summary:
In this manuscript, Wang and colleagues explore factors contributing to the diversification of wtf meiotic drivers. wtf genes are autonomous, single-gene poison-antidote meiotic drivers that encode both a spore-killing poison (short isoform) and an antidote to the poison (long isoform) through alternative transcriptional initiation. There are dozens of wtf drivers present in the genomes of various yeast species, yet the evolutionary forces driving their diversification remain largely unknown. This manuscript is written in a straightforward and effective manner, and the analyses and experiments are easy to follow and interpret. While I find the research question interesting and the experiments persuasive, they do not provide any deeper mechanistic understanding of this gene family.
Strengths:
(1) The authors present a comprehensive compendium and analysis of the evolutionary relationships among wtf genes across 21 strains of S. pombe.
(2) The authors found that a synthetic chimeric wtf gene, combining exons 1-5 of wtf23 and exon 6 of wtf18, behaves like a meiotic driver that could only be rescued by the chimeric antidote but neither of the parental antidotes. This is a very interesting observation that could account for their inception and diversification.
Weaknesses:
(1) Deletion strains
The authors separately deleted all 25 Wtf genes in the S. pombe ference strain. Next, the authors performed a spot assay to evaluate the effect of wtf gene knockout on the yeast growth. They report no difference to the WT and conclude that the wtf genes might be largely neutral to the fitness of their carriers in the asexual life cycle at least in normal growth conditions.
The authors could have conducted additional quantitative growth assays in yeast, such as growth curves or competition assays, which would have allowed them to detect subtle fitness effects that cannot be quantified with a spot assay. Furthermore, the authors do not rule out simpler explanations, such as genetic redundancy. This could have been addressed by crossing mutants of closely related paralogs or editing multiple wtf genes in the same genetic background.
Another concern is the lack of detailed information about the 25 knockout strains used in the study. There is no information provided on how these strains were generated or, more importantly, validated. Many of these wtf genes have close paralogs and are flanked by repetitive regions, which could complicate the generation of such deletion strains. As currently presented, these results would be difficult to replicate in other labs due to insufficient methodological details
(2) Lack of controls
The authors found that a synthetic chimeric wtf gene, constructed by combining exons 1-5 of wtf23 and exon 6 of wtf18, behaves as a meiotic driver that can be rescued only by its corresponding chimeric antidote, but not by either of the parental antidotes (Figure 4F). In contrast, three other chimeric wtf genes did not display this property (Figure 4C-E). No additional experiments were conducted to explain these differences, and basic control experiments, such as verifying the expression of the chimeric constructs, were not performed to rule out trivial explanations. This should be at the very least discussed. Also, it would have been better to test additional chimeras.
3. Statistical analyses
In line 130 the authors state that: "Given complex phylogenetic mixing observed among wtf genes (Figure 1E), we tested whether recombination occurred. We detected signals of recombination in the 25 wtf genes of the S. pombe reference genome (p = 0) and in the wtf genes of the 21 S. pombe strains (p = 0) using pairwise homoplasy index (HPI) test. ". Reporting a p-value of 0 is not appropriate. Exact P-values should be reported.