Acute targeted induction of gut-microbial metabolism affects host clock genes and nocturnal feeding

  1. Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
  2. Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Peter Turnbaugh
    University of California, San Francisco, San Francisco, United States of America
  • Senior Editor
    Wendy Garrett
    Harvard T.H. Chan School of Public Health, Boston, United States of America

Reviewer #1 (Public Review):

Greter et al. provide an interesting and creative use of lactulose as a "microbial metabolism" inducer, combined with tracking of H2 and other fermentation end products. The topic is timely and will likely be of broad interest to researchers studying nutrition, circadian rhythm, and gut microbiota. However, a couple of moderate to major concerns were noted that may impact the interpretation of the current data:

(1) Much of the data relies on housing gnotobiotic mice in metabolic cages, but I couldn't find any details of methods to assess contamination during multiple days of housing outside of gnotobiotic isolators/cages. Given the complexity of the metabolic cage system used, sterility would likely be incredibly challenging to achieve. More details needed to be included about how potential contamination of the mice was assessed, ideally with 16S rRNA gene sequencing data of the endpoint samples and/or qPCR for total colonization levels relative to the more targeted data shown.

(2) The language could be softened to provide a more nuanced discussion of the results. While lactulose does seem to induce microbial metabolism it also could have direct effects on the host due to its osmotic activity or other off-target effects. Thus, it seems more precise to just refer to lactulose specifically in the figure titles and relevant text. Additionally, the degree to which lactulose "disrupts the diurnal rhythm" isn't clear from the data shown, especially given that the markers of circadian rhythm rapidly recover from the perturbation. It is probably more precise to instead state that lactulose transiently induces fermentation during the light phase or something to that effect. The discussion could also be expanded to address what methods are available or could be developed to build upon the concepts here; for example, the use of genetic inducers of metabolism which may avoid the more complex responses to lactulose.

Despite these concerns, this was still an intriguing and valuable addition to the growing literature on the interface of the microbiome and circadian fields.

Reviewer #2 (Public Review):

Summary:

The authors aimed to investigate how microbial metabolites, such as hydrogen and short-chain fatty acids (SCFAs), influence feeding behavior and circadian gene expression in mice. Specifically, they sought to understand these effects in different microbial environments, including a reduced community model (EAM), germ-free mice, and SPF mice. The study was designed to explore the broader relationship between the gut microbiome and host circadian rhythms, an area that is not well understood. Through their experiments, the authors hoped to elucidate how microbial metabolism could impact circadian clock genes and feeding patterns, potentially revealing new mechanisms of gut microbiome-host interactions.

Strengths:

The manuscript presents a well-executed investigation into the complex relationship between microbial metabolites and circadian rhythms, with a particular focus on feeding behavior and gene expression in different mouse models. One of the major strengths of the work lies in its innovative use of a reduced community model (EAM) to isolate and examine the effects of specific microbial metabolites, which provides valuable insights into how these metabolites might influence host behavior and circadian regulation. The study also contributes to the broader understanding of the gut microbiome's role in circadian biology, an area that remains poorly understood. The experiments are thoughtfully designed, with a clear rationale that ties together the gut microbiome, metabolic products, and host physiological responses. The authors successfully highlight an intriguing paradox: the significant influence of microbial metabolites in the EAM model versus the lack of effect in germ-free and SPF mice, which adds depth to the ongoing exploration of microbial-host interactions. Despite some methodological concerns, the manuscript offers compelling data and opens up new avenues for research in the field of microbiome and circadian biology.

Weaknesses:

The manuscript, while providing valuable insights, has several methodological weaknesses that impact the overall strength of the findings. First, the process for stool collection lacks clarity, raising concerns about potential biases, such as the risk of coprophagia, which could affect the dry-to-wet weight ratio analysis and compromise the validity of these measurements. Additionally, the use of the term "circadian" in some contexts appears inaccurate, as "diurnal" might be more appropriate, especially given the uncertainty regarding whether the observed microbiome fluctuations are truly circadian. Another significant issue is the unexpected absence of an osmotic effect of lactulose in EAM mice, which contradicts the known properties of lactulose as an osmotic laxative. This finding requires further verification, including the use of a positive control, to ensure it is not artifactual. The presentation of qRT-PCR data as log2-fold changes, with a mean denominator, could introduce bias by artificially reducing variability, potentially leading to spurious findings or increased risk of Type I error. This approach may explain the unexpected activation of both the positive and negative limbs of the circadian clock. Moreover, the lack of detailed information on the primers and housekeeping genes used in the experiments is concerning, particularly given the importance of using non-circadian housekeeping genes for accurate normalization. The methods for measuring metabolic hormones, such as GLP-1 and GIP, are also not adequately described. If DPP-IV/protease inhibitor tubes were not used, the data could be unreliable due to the rapid degradation of these hormones by circulating proteases. Finally, the manuscript does not address the collection of hormone levels during both fasting and fed phases, a critical aspect for interpreting the metabolic impact of microbial metabolites. These methodological concerns collectively weaken the robustness of the study's results and warrant careful reconsideration and clarification by the authors.

Because of these weaknesses, the authors have partially achieved their aims by providing novel insights into the relationship between microbial metabolites and host circadian rhythms. The data do suggest that microbial metabolites can significantly influence feeding behavior and circadian gene expression in specific contexts. However, the unexpected absence of an osmotic effect of lactulose, the potential biases introduced by the log2-fold change normalization in qRT-PCR data, and the lack of clarity in critical methodological details weaken the overall conclusions. While the study provides valuable contributions to understanding the gut microbiome's role in circadian biology, the methodological weaknesses prevent a full endorsement of the authors' conclusions. Addressing these issues would be necessary to strengthen the support for their findings and fully achieve the study's aims.

Despite the methodological concerns raised, this work has the potential to make a significant impact on the field of circadian biology and microbiome research. The study's exploration of the interaction between microbial metabolites and host circadian rhythms in different microbial environments opens new avenues for understanding the complex interplay between the gut microbiome and host physiology. This research contributes to the growing body of evidence that microbial metabolites play a crucial role in regulating host behaviors and physiological processes, including feeding and circadian gene expression.

Reviewer #3 (Public Review):

Summary:

In the manuscript by Greter, et al., entitled "Acute targeted induction of gut-microbial metabolism affects host clock genes and nocturnal feeding" the authors are attempting to demonstrate that an acute exposure to a non-nutritive disaccharide (lactulose) promotes microbial metabolism that feeds back onto the host to impact circadian networks. The premise of the study is interesting and the authors have performed several thoughtful experiments to dissect these relationships, providing valuable insights for the field. However, the work presented does not necessarily support some of the conclusions that are drawn. For instance, lactulose is administered during the fasting period to mimic the impact of a feeding bout on the gut microbiota, but it would be important to perform this treatment during the fed state as well to show that the effects on food intake, etc. do not occur. To truly draw the conclusion that the current outcomes are directly connected to and mediated via an impact on the host circadian clock, it would be ideal to perform these studies in a circadian gene knock-out animal (i.e., Cry1 or Cry2 KO mice, or perhaps Bmal-VilCre tissue-specific KO mice). If the effects are lost in these animals, this would more concretely connect the current findings to the circadian clock gene network. Despite these reservations, the work is promising.

Strengths:

Attempting to disentangle nutrient acquisition from microbial fermentation and its impact on diurnal dynamics of gut microbes on host circadian rhythms is an important step for providing insights into these host-microbe interactions.

The authors utilize a novel approach in leveraging lactulose coupled with germ-free animals and metabolic cages fitted with detectors that can measure microbial byproducts of fermentation, particularly hydrogen, in real-time.

The authors consider several interesting aspects of lactulose delivery, including how it shifts osmotic balance as well as provides calculations that attempt to explain the caloric contribution of fermentation to the animal in the context of reduced food intake. This provides interesting fundamental insights into the role of microbial outputs on host metabolism.

Weaknesses:

While the authors have done a large amount of work to examine the osmotic vs. metabolic influence of lactulose delivery, the authors have not accounted for the enlarged cecum and increased cecal surface area in germ-free mice. The authors could consider an additional control of cecectomy in germ-free mice.

The authors have examined GI hormones as one possible mechanism for how food intake is altered by microbial fermentation of lactulose. However, the authors measure PYY and GLP-1 only at a single time point, stating that there are no differences between groups. Given the goal of the studies is to tie these findings back into circadian rhythms, it would be important to show if the diurnal patterns of these GI hormones are altered.

Considerations of other factors, such as conjugated vs. deconjugated bile acids, microbial bile salt hydrolase activity, and bile acid resorption, might be an important consideration for how lactulose elicits more influence on ileal circadian clock genes relative to cecum and colon.

Measurements of GI transit time (both whole gut and regional) would be an important for consideration for how lactulose might be impacting the ileum vs. cecum vs. colon.

Author response:

Reviewer #1 (Public Review):

Greter et al. provide an interesting and creative use of lactulose as a "microbial metabolism" inducer, combined with tracking of H2 and other fermentation end products. The topic is timely and will likely be of broad interest to researchers studying nutrition, circadian rhythm, and gut microbiota. However, a couple of moderate to major concerns were noted that may impact the interpretation of the current data:

(1) Much of the data relies on housing gnotobiotic mice in metabolic cages, but I couldn't find any details of methods to assess contamination during multiple days of housing outside of gnotobiotic isolators/cages. Given the complexity of the metabolic cage system used, sterility would likely be incredibly challenging to achieve. More details needed to be included about how potential contamination of the mice was assessed, ideally with 16S rRNA gene sequencing data of the endpoint samples and/or qPCR for total colonization levels relative to the more targeted data shown.

We thank the reviewer for pointing out that we have not made the experimental setup clear in the text. One of the unique features of our metabolic cage setup is that the mice do not need to be housed outside gnotobiotic isolators, but that the whole system is placed inside an isolator. We have developed and published this system recently (Hoces et al, PLOS Biol 2022), including extensive testing for sterility/gnotobiosis. We will improve clarity in a revised version.

Given that 16S sequencing of germ-free mice will typically produce false positive reads, we used Blautia pseudococcoides as an indicator strain for contaminations. This strain is present in our SPF mouse colony, forms spores that are highly resilient to decontamination measures, and has been the most likely contaminant in our gnotobiotic system. We have checked for presence of this strain in the cecum content of all our animals at the end of each experiment, and only included experiments which had a B. pseudococcoides signal below threshold level.

(2) The language could be softened to provide a more nuanced discussion of the results. While lactulose does seem to induce microbial metabolism it also could have direct effects on the host due to its osmotic activity or other off-target effects. Thus, it seems more precise to just refer to lactulose specifically in the figure titles and relevant text. Additionally, the degree to which lactulose "disrupts the diurnal rhythm" isn't clear from the data shown, especially given that the markers of circadian rhythm rapidly recover from the perturbation. It is probably more precise to instead state that lactulose transiently induces fermentation during the light phase or something to that effect. The discussion could also be expanded to address what methods are available or could be developed to build upon the concepts here; for example, the use of genetic inducers of metabolism which may avoid the more complex responses to lactulose.

The point about language is well taken. We tried to make the argument that what we call disruption of the diurnal rhythm is acute, meaning that it is not disrupting the rhythm "chronically" (i.e., for longer), but that it recovers rapidly from this transient disruption. Given the confusion this wording is causing we are rephrasing this in a new version of the manuscript.

We also appreciate the mention of concepts from our study that can be built on in future studies, and we will add a paragraph on potential further research.

Despite these concerns, this was still an intriguing and valuable addition to the growing literature on the interface of the microbiome and circadian fields.

We thank the reviewer for all their encouraging and constructive remarks!

Reviewer #2 (Public Review):

Summary:

The authors aimed to investigate how microbial metabolites, such as hydrogen and short-chain fatty acids (SCFAs), influence feeding behavior and circadian gene expression in mice.

Specifically, they sought to understand these effects in different microbial environments, including a reduced community model (EAM), germ-free mice, and SPF mice. The study was designed to explore the broader relationship between the gut microbiome and host circadian rhythms, an area that is not well understood. Through their experiments, the authors hoped to elucidate how microbial metabolism could impact circadian clock genes and feeding patterns, potentially revealing new mechanisms of gut microbiome-host interactions.

Strengths:

The manuscript presents a well-executed investigation into the complex relationship between microbial metabolites and circadian rhythms, with a particular focus on feeding behavior and gene expression in different mouse models. One of the major strengths of the work lies in its innovative use of a reduced community model (EAM) to isolate and examine the effects of specific microbial metabolites, which provides valuable insights into how these metabolites might influence host behavior and circadian regulation. The study also contributes to the broader understanding of the gut microbiome's role in circadian biology, an area that remains poorly understood. The experiments are thoughtfully designed, with a clear rationale that ties together the gut microbiome, metabolic products, and host physiological responses. The authors successfully highlight an intriguing paradox: the significant influence of microbial metabolites in the EAM model versus the lack of effect in germ-free and SPF mice, which adds depth to the ongoing exploration of microbial-host interactions. Despite some methodological concerns, the manuscript offers compelling data and opens up new avenues for research in the field of microbiome and circadian biology.

We thank the reviewer for their encouraging remarks, specifically on the surprising findings that microbial metabolism seems to affect circadian clock gene expression and behavior differently in EAM and SPF mice.

Weaknesses:

The manuscript, while providing valuable insights, has several methodological weaknesses that impact the overall strength of the findings. First, the process for stool collection lacks clarity, raising concerns about potential biases, such as the risk of coprophagia, which could affect the dry-to-wet weight ratio analysis and compromise the validity of these measurements.

We thank the reviewer for pointing out that our description of the specific methods used for collecting feces were presented in a somewhat confusing manner. In short, dry and wet fecal weights were determined based on fecal pellets that were freshly produced and directly collected from restrained mice. To determine total fecal output over time, we collected all fecal pellets produced in a 5 hour window in a cage, determined their dry weight, and then used the water content determined for fresh feces to calculate wet weight. Using this method, we cannot account for potential differences in coprophagia between the groups. However, this is not likely to affect the dry-to-wet ratio of fecal output in our results.

Additionally, the use of the term "circadian" in some contexts appears inaccurate, as "diurnal" might be more appropriate, especially given the uncertainty regarding whether the observed microbiome fluctuations are truly circadian.

Similarly to our answer to reviewer 1 above, we appreciate this remark about imprecise language and have addressed this issue in the text. Indeed, we do not think the microbiota fluctuations are truly circadian, but likely a result of the entrainment through the host's food intake.

Another significant issue is the unexpected absence of an osmotic effect of lactulose in EAM mice, which contradicts the known properties of lactulose as an osmotic laxative. This finding requires further verification, including the use of a positive control, to ensure it is not artifactual.

This is a good point. We have used this lactulose dosage specifically to induce microbial metabolism without causing osmotic diarrhea, and went to some lengths do demonstrate this. In response to this comment (and one by reviewer 3 below about transit time), we are planning an experiment that will use a higher lactulose dose as a positive control.

The presentation of qRT-PCR data as log2-fold changes, with a mean denominator, could introduce bias by artificially reducing variability, potentially leading to spurious findings or increased risk of Type I error. This approach may explain the unexpected activation of both the positive and negative limbs of the circadian clock.

While we agree that our description of the qpcr method used for measuring circadian clock gene expression was lacking detail, we do not see how log2-fold changes (as opposed to, e.g., fold change) would lead to an increased risk of Type 1 error. We did not use a mean denominator for analyzing the data but used the house-keeping data for the same sample as denominator for the respective circadian clock genes. This will be described more clearly in a revised methods section.

Moreover, the lack of detailed information on the primers and housekeeping genes used in the experiments is concerning, particularly given the importance of using non-circadian housekeeping genes for accurate normalization.

We apologize for this omission, it seems like the resource table got lost in the submission, leading to missing information. It will be included in the revised manuscript.

The methods for measuring metabolic hormones, such as GLP-1 and GIP, are also not adequately described. If DPP-IV/protease inhibitor tubes were not used, the data could be unreliable due to the rapid degradation of these hormones by circulating proteases.

We thank the reviewer for spotting this mistake. We will add details of how GLP-1 and GIP were measured to the methods section. While we did not use DPP-IV/protease inhibitor tubes, we added the inhibitors to the syringes when sampling blood, leading to the same effect.

Finally, the manuscript does not address the collection of hormone levels during both fasting and fed phases, a critical aspect for interpreting the metabolic impact of microbial metabolites.

We agree that it will be interesting to measure hormone levels also in the fed phase, and we will include this data in a revised version of the manuscript. Even with that data, a more thorough examination of hormone levels over the diurnal cycle, as suggested by reviewer 3, might be relevant for a full-scale follow-up. Given our data, we of course cannot exclude that there may be time-point-specific differences and therefore have softened the language around this conclusion to state that hormone levels are not acutely changed after a lactulose intervention “at the time-points examined”.

These methodological concerns collectively weaken the robustness of the study's results and warrant careful reconsideration and clarification by the authors.

Because of these weaknesses, the authors have partially achieved their aims by providing novel insights into the relationship between microbial metabolites and host circadian rhythms. The data do suggest that microbial metabolites can significantly influence feeding behavior and circadian gene expression in specific contexts. However, the unexpected absence of an osmotic effect of lactulose, the potential biases introduced by the log2-fold change normalization in qRT- PCR data, and the lack of clarity in critical methodological details weaken the overall conclusions. While the study provides valuable contributions to understanding the gut microbiome's role in circadian biology, the methodological weaknesses prevent a full endorsement of the authors' conclusions. Addressing these issues would be necessary to strengthen the support for their findings and fully achieve the study's aims.

We thank the reviewer again for their careful and critical reading of our work, and for their constructive input. We hope that many of the concerns will be addressed by providing more methodological detail and additional experimental data in the revised version of our manuscript.

Despite the methodological concerns raised, this work has the potential to make a significant impact on the field of circadian biology and microbiome research. The study's exploration of the interaction between microbial metabolites and host circadian rhythms in different microbial environments opens new avenues for understanding the complex interplay between the gut microbiome and host physiology. This research contributes to the growing body of evidence that microbial metabolites play a crucial role in regulating host behaviors and physiological processes, including feeding and circadian gene expression.

We thank the reviewer for their encouraging remarks!

Reviewer #3 (Public Review):

Summary:

In the manuscript by Greter, et al., entitled "Acute targeted induction of gut-microbial metabolism affects host clock genes and nocturnal feeding" the authors are attempting to demonstrate that an acute exposure to a non-nutritive disaccharide (lactulose) promotes microbial metabolism that feeds back onto the host to impact circadian networks. The premise of the study is interesting and the authors have performed several thoughtful experiments to dissect these relationships, providing valuable insights for the field. However, the work presented does not necessarily support some of the conclusions that are drawn. For instance, lactulose is administered during the fasting period to mimic the impact of a feeding bout on the gut microbiota, but it would be important to perform this treatment during the fed state as well to show that the effects on food intake, etc. do not occur.

This is a good point, and we will include an experiment addressing this in a revised version of the manuscript.

To truly draw the conclusion that the current outcomes are directly connected to and mediated via an impact on the host circadian clock, it would be ideal to perform these studies in a circadian gene knock-out animal (i.e., Cry1 or Cry2 KO mice, or perhaps Bmal-VilCre tissue- specific KO mice). If the effects are lost in these animals, this would more concretely connect the current findings to the circadian clock gene network.

We agree that these would be interesting experiments to follow up on the question how the observed effects are actuated by host functions. However, they would require a large amount of preparatory work (including rederiving the KO mice to get them germ-free in our gnotobiotic facility), we argue that they are beyond the scope of this study.

Despite these reservations, the work is promising.

We thank the reviewer for their encouraging assessment.

Strengths:

Attempting to disentangle nutrient acquisition from microbial fermentation and its impact on diurnal dynamics of gut microbes on host circadian rhythms is an important step for providing insights into these host-microbe interactions.

The authors utilize a novel approach in leveraging lactulose coupled with germ-free animals and metabolic cages fitted with detectors that can measure microbial byproducts of fermentation, particularly hydrogen, in real-time.

The authors consider several interesting aspects of lactulose delivery, including how it shifts osmotic balance as well as provides calculations that attempt to explain the caloric contribution of fermentation to the animal in the context of reduced food intake. This provides interesting fundamental insights into the role of microbial outputs on host metabolism.

Thank you!

Weaknesses:

While the authors have done a large amount of work to examine the osmotic vs. metabolic influence of lactulose delivery, the authors have not accounted for the enlarged cecum and increased cecal surface area in germ-free mice. The authors could consider an additional control of cecectomy in germ-free mice.

We thank the reviewer for pointing out the potential effect of the anatomical differences of germ- free and conventionally colonized mice. We agree that when comparing germ-free mice to SPF mice, the enlarged cecum area in germ-free animals could lead to differences in water release or uptake. However, this is not the case in the gnotobiotic mice colonized with our minimal microbiota, which have comparable cecum sizes to germ-free mice, and thus comparing water transport over the cecum wall between those groups can be done without correcting for cecal surface areas. We will add information on cecum sizes in the different experimental groups to a revised version of the manuscript.

The authors have examined GI hormones as one possible mechanism for how food intake is altered by microbial fermentation of lactulose. However, the authors measure PYY and GLP-1 only at a single time point, stating that there are no differences between groups. Given the goal of the studies is to tie these findings back into circadian rhythms, it would be important to show if the diurnal patterns of these GI hormones are altered.

We fully agree that a deeper investigation of the diurnal fluctuations of hormone levels would be an interesting next step in studying whether perturbations in food intake can disturb these rhythms. Doing this for the whole rhythm would really require a full second study. For a revised version of this manuscript, we will add a second time-point of hormone measurements (during the fed phase) to this study. In addition, we will soften the statements made around these data to point out just that hormone level fluctuations could not be detected during specific time points after lactulose treatment, and therefore do not seem to explain the imminent behavioral changes.

Considerations of other factors, such as conjugated vs. deconjugated bile acids, microbial bile salt hydrolase activity, and bile acid resorption, might be an important consideration for how lactulose elicits more influence on ileal circadian clock genes relative to cecum and colon.

We absolutely agree that investigation of microbial bile acid modification and their metabolism by the host would be an interesting topic for a follow-up study.

Measurements of GI transit time (both whole gut and regional) would be an important for consideration for how lactulose might be impacting the ileum vs. cecum vs. colon.

This is also an interesting point, and we will add an assessment of transit time to a revised version of the manuscript.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation