Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorLisa GiocomoStanford School of Medicine, Stanford, United States of America
- Senior EditorLaura ColginUniversity of Texas at Austin, Austin, United States of America
Reviewer #1 (Public review):
Summary:
This study investigated how traumatic brain injury affects oscillatory and single-unit hippocampal activity in awake-behaving rats.
Strengths:
The use of high-density laminar electrodes enabled precise localization of recording sites. To ensure an unbiased, rigorous approach, single-unit analysis was performed by a reviewer who was blind to experimental conditions. A proof of concept study was undertaken to characterize the pathology that resulted from the specific TBI model used in the main study. There was an effort to link abnormalities in hippocampal activity to memory disruption by running a cohort of rats on the Morris Water Maze task.
Weaknesses:
The paper is written as if the experiment was exploratory and not hypothesis-driven despite the fact that there is a wealth of experimental evidence about this TBI model that could have informed very specific predictions to test a hypothesis that is only hinted at in the discussion. The number of rats used for the spatial working memory experiment is not reported. Some of the statistics are not completely reported. It is also unclear what the rationale was for recording single units in a novel and familiar environment. Furthermore, this analysis comparing single-unit activity between familiar and novel environments is quite rudimentary. There are much more rigorous analyses to answer the question of how hippocampal single-unit firing patterns differ across changes in environments. There are details lacking about the number of units recorded per session and per rat, all of which are usually reported in studies that record single units. Spatial working memory assessment is delegated to a single panel of a supplementary figure. More importantly, there is no effort to dissociate between spatial working memory deficits and other motor, motivational, or sensory deficits that could have been driving the lower "memory score" in the experimental group.
Reviewer #2 (Public review):
Summary:
The authors investigate changes in theta-gamma phase amplitude coupling, and action potential entrainment to theta following traumatic brain injury (TBI). Both phenomena are widely hypothesized to be important for cognition, and the authors report deficits in both after TBI. The manuscript is well-written, the figures are well-constructed, and the author's use of high-level analysis methods for TBI EEG data collected from awake, behaving animals is welcome.
Major Comments:
- The animal n's are small (4 sham and 5 injured). In Figure 3, for instance, one wonders if panels D and E might have shown significant differences if more animals had been recorded.
- The text focuses on deficits in the theta and gamma bands, but the reduction in power appears to be broadband (see Figure 1F, especially Pyramidal cell layer panel). Therefore, the overall decrease in broadband (in the injured population) must be normalized between sham and injured animals before a selective comparison between sham and injured animals can be conducted. That is the only way that selective narrow bands i.e., theta and low gamma can be compared between the two cohorts. A brief discussion of the significance of a broadband decrease would be appreciated.
Reviewer #3 (Public review):
Summary:
In this study, the authors studied the effects of traumatic brain injury created by LFPI procedure on the CA1 at the network level. The major findings in this study seem to be that the TBI reduces theta and gamma powers in CA1, reduces phase-amplitude coupling in between theta and gamma bands as well as disrupts the gamma entrainment of interneurons. I think the authors have made some important discoveries that could help advance the understanding of TBI effects at the physiological level, however, more investigations into deciphering the relationship of the behavioral and brain states to the observed effects would help clarify the interpretations for the readers.
Strengths:
The authors in this study were able to combine behavioral verification of the TBI model with the laminar electrophysiological recordings of the CA1 region to bring forward network-level anomalies such as the temporal coordination of network-level oscillations as well as in the firing of the interneurons. Indeed, it seems that the findings may serve future studies to functionally better understand and/or refine the therapies for the TBI.
Weaknesses:
Discoveries made in the paper and their broad interpretations can be helped with further characterization and comparison among the brain and behavioral states both during immobility and movement. The impact of brain injury in several parts of the brain can alter brain-wide LFP and/or behavior. The altered behavior and/or LFP patterns might then lead to reduced spiking and unreliable LFP oscillations in the hippocampus. Hence, claims made in the abstract such as "These results reveal deficits in information encoding and retrieval schemes essential to cognition that likely underlie TBI-associated learning and memory impairments, and elucidate potential targets for future neuromodulation therapies" do not have enough evidence to test whether the disruptions were information encoding and retrieval related or due to sensory-motor and/or behavioral deficits that could also occur during TBI.
Movement velocity is already known to be correlated to the entrainment of spikes with the theta rhythm and also in some cases with the gamma oscillations. So, it is important to disentangle the differences in behavioral variables and the observed effects. As an example, the author's claims of disrupted temporal coding (as shown in the graphical abstract) might have suffered from these confounds. The observed results of reduced entrainment might, on one hand, be due to the decreased LFP power (induced by injury in different brain areas) resulting in altered behavior and/or the unreliable oscillations of the LFP bands such as theta and gamma, rather than memory encoding and retrieval related disruption of spikes synchrony to the rhythms, while on the other hand, they may simply be due to reduced excitability in the neurons particularly in the behavioral and brain state in which the effects were observed, rather than disrupted temporal code. Hence, further investigations into dissociating these factors could help readers mechanistically understand the interesting results observed by the authors.