Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorMaria ChaitUniversity College London, London, United Kingdom
- Senior EditorAndrew KingUniversity of Oxford, Oxford, United Kingdom
Reviewer #1 (Public review):
This paper presents a comprehensive study of how neural tracking of speech is affected by background noise. Using five EEG experiments and Temporal response function (TRF), it investigates how minimal background noise can enhance speech tracking even when speech intelligibility remains very high. The results suggest that this enhancement is not attention-driven but could be explained by stochastic resonance. These findings generalize across different background noise types and listening conditions, offering insights into speech processing in real-world environments.
I find this paper well-written, the experiments and results are clearly described. However, I have a few comments that may be useful to address.
(1) The behavioral accuracy and EEG results for clear speech in Experiment 4 differ from those of Experiments 1-3. Could the author provide insights into the potential reasons for this discrepancy? Might it be due to linguistic/ acoustic differences between the passages used in experiments? If so, what was the rationale behind using different passages across different experiments?
(2) Regarding peak amplitude extraction, why were the exact peak amplitudes and latencies of the TRFs for each subject not extracted, and instead, an amplitude average within a 20 ms time window based on the group-averaged TRFs used? Did the latencies significantly differ across different SNR conditions?
(3) How is neural tracking quantified in the current study? Does improved neural tracking correlate with EEG prediction accuracy or individual peak amplitudes? Given the differing trends between N1 and P2 peaks in babble and speech-matched noise in experiment 3, how is it that babble results in greater envelope tracking compared to speech-matched noise?
(4) The paper discusses how speech envelope-onset tracking varies with different background noises. Does the author expect similar trends for speech envelope tracking as well? Additionally, could you explain why envelope onsets were prioritized over envelope tracking in this analysis?
Reviewer #2 (Public review):
The author investigates the role of background noise on EEG-assessed speech tracking in a series of five experiments. In the first experiment, the influence of different degrees of background noise is investigated and enhanced speech tracking for minimal noise levels is found. The following four experiments explore different potential influences on this effect, such as attentional allocation, different noise types, and presentation mode.
The step-wise exploration of potential contributors to the effect of enhanced speech tracking for minimal background noise is compelling. The motivation and reasoning for the different studies are clear and logical and therefore easy to follow. The results are discussed in a concise and clear way. While I specifically like the conciseness, one inevitable consequence is that not all results are equally discussed in depth.
Based on the results of the five experiments, the author concludes that the enhancement of speech tracking for minimal background noise is likely due to stochastic resonance. Given broad conceptualizations of stochastic resonance as a noise benefit this is a reasonable conclusion.
This study will likely impact the field as it provides compelling support questioning the relationship between speech tracking and speech processing.