Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorYongliang YangDalian University of Technology, Dalian, China
- Senior EditorCaigang LiuShengjing Hospital of China Medical University, Shenyang, China
Reviewer #1 (Public review):
Summary:
Triple-negative breast cancer (TNBC) accounts for approximately 15-20% of all breast cancers. Compared to other types of breast cancer, TNBC exhibits highly aggressive clinical characteristics, a greater likelihood of metastasis, poorer clinical outcomes, and lower survival rates. Immunotherapy is an important treatment option for TNBC, but there is significant heterogeneity in treatment response. Therefore, it is crucial to accurately identify immunosuppressive patients before treatment and actively seek more effective therapeutic approaches for TNBC patients.
Strengths:
In this work, the authors collected and integrated data from single cells and large volumes of RNA sequencing and RNA-SEQ to analyze the TME landscape mediated by genes associated with iron death. On this basis, the prediction model of prognosis and treatment response of 131 patients was constructed using a machine learning algorithm, which is beneficial to provide individualized and precise treatment guidance for breast cancer patients.
Weaknesses:
However, there are still some issues that need to be clarified:
(1) The description of the research background is too brief and concise, and it is necessary to add some information about the limitations of existing methods and the differences and advantages of this study compared with other published relevant studies, so as to better highlight the necessity and research value of this study.
(2) This study is a retrospective analysis of a public data set and lacks experimental validation and prospective experiments to support the results of bioinformatics analysis. This should be added to the acknowledgment of limitations in the study.
Reviewer #2 (Public review):
Summary:
This study aims to explore the ferroptosis-related immune landscape of TNBC through the integration of single-cell and bulk RNA sequencing data, followed by the development of a risk prediction model for prognosis and drug response. The authors identified key subpopulations of immune cells within the TME, particularly focusing on T cells and macrophages. Using machine learning algorithms, the authors constructed a ferroptosis-related gene risk score that accurately predicts survival and the potential response to specific drugs in TNBC patients.
Strengths:
The study identifies distinct subpopulations of T cells and macrophages with differential expression of ferroptosis-related genes. The clustering of these subpopulations and their correlation with patient prognosis is highly insightful, especially the identification of the TREM2+ and FOLR2+ macrophage subtypes, which are linked to either favorable or poor prognoses. The risk model thus holds potential not only for prognosis but also for guiding treatment selection in personalized oncology.
Weaknesses:
The study has a relatively small sample size, with only 9 samples analyzed by scRNA-seq. Given the typically high heterogeneity of the tumor microenvironment (TME) in cancer patients, this may affect the accuracy of the conclusions. The scRNA-seq analysis focuses on the expression of ferroptosis-related genes in various cells within the TME. In contrast, bulk RNA sequencing uses data from tumor samples, and the results between the two analyses are not consistent. The bulk RNA sequencing results may not accurately capture the changes happening in the microenvironment.