Prophage-encoded Hm-oscar gene recapitulates Wolbachia-induced male killing in the tea tortrix moth Homona magnanima

  1. National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
  2. United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
  3. Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
  4. Crop Environment Section, Tea and Beverage Research Station, Ministry of Agriculture, Taoyuan City, Taiwan

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Bruno Lemaitre
    École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
  • Senior Editor
    Claude Desplan
    New York University, New York, United States of America

Reviewer #1 (Public review):

Summary:

Insects and their relatives are commonly infected with microbes that are transmitted from mothers to their offspring. A number of these microbes have independently evolved the ability to kill the sons of infected females very early in their development; this male killing strategy has evolved because males are transmission dead-ends for the microbe. A major question in the field has been to identify the genes that cause male killing and to understand how they work. This has been especially challenging because most male-killing microbes cannot be genetically manipulated. This study focuses on a male-killing bacterium called Wolbachia. Different Wolbachia strains kill male embryos in beetles, flies, moths, and other arthropods. This is remarkable because how sex is determined differs widely in these hosts. Two Wolbachia genes have been previously implicated in male-killing by Wolbachia: oscar (in moth male-killing) and wmk (in fly male-killing). The genomes of some male-killing Wolbachia contain both of these genes, so it is a challenge to disentangle the two.

This paper provides strong evidence that oscar is responsible for male-killing in moths. Here, the authors study a strain of Wolbachia that kills males in a pest of tea, Homona magnanima. Overexpressing oscar, but not wmk, kills male moth embryos. This is because oscar interferes with masculinizer, the master gene that controls sex determination in moths and butterflies. Interfering with the masculinizer gene in this way leads the (male) embryo down a path of female development, which causes problems in regulating the expression of genes that are found on the sex chromosomes.

Strengths:

The authors use a broad number of approaches to implicate oscar, and to dissect its mechanism of male lethality. These approaches include:
(1) Overexpressing oscar (and wmk) by injecting RNA into moth eggs.
(2) Determining the sex of embryos by staining female sex chromosomes.
(3) Determining the consequences of oscar expression by assaying sex-specific splice variants of doublesex, a key sex determination gene, and by quantifying gene expression and dosage of sex chromosomes, using RNASeq.
(4) Expressing oscar along with masculinizer from various moth and butterfly species, in a silkmoth cell line.

This extends recently published studies implicating oscar in male-killing by Wolbachia in Ostrinia corn borer moths, although the Homona and Ostrinia oscar proteins are quite divergent. Combined with other studies, there is now broad support for oscar as the male-killing gene in moths and butterflies (i.e. order Lepidoptera). So an outstanding question is to understand the role of wmk. Is it the master male-killing gene in insects other than Lepidoptera and if so, how does it operate?

Weaknesses:

I found the transfection assays of oscar and masculinizer in the silkworm cell line (Figure 4) to be difficult to follow. There are also places in the text where more explanation would be helpful for non-experts (see recommendations).

Reviewer #2 (Public review):

Summary:

Wolbachia are maternally transmitted bacteria that can manipulate host reproduction in various ways. Some Wolbachia induce male killing (MK), where the sons of infected mothers are killed during development. Several MK-associated genes have been identified in Homona magnanima, including Hm-oscar and wmk-1-4, but the mechanistic links between these Wolbachia genes and MK in the native host are still unclear.

In this manuscript, Arai et al. show that Hm-oscar is the gene responsible for Wolbachia-induced MK in Homona magnanima. They provide evidence that Hm-Oscar functions through interactions with the sex determination system. They also found that Hm-Oscar disrupts sex determination in male embryos by inducing female-type dsx splicing and impairing dosage compensation. Additionally, Hm-Oscar suppresses the function of Masc. The manuscript is well-written and presents intriguing findings. The results support their conclusions regarding the diversity and commonality of MK mechanisms, contributing to our understanding of the mechanisms and evolutionary aspects of Wolbachia-induced MK.

Strengths/weaknesses:

(1) The authors found that transient overexpression of Hm-oscar, but not wmk-1-4, in Wolbachia-free H. magnanima embryos induces female-biased sex ratios. These results are striking and mirror the phenotype of the wHm-t infected line (WT12). However, Table 1 lists the "male ratio," while the text presents the "female ratio" with standard deviation. For consistency, the calculation term should be uniform, and the "ratio" should be listed for each replicate.

(2) The error bars in Figure 3 are quite large, and the figure lacks statistical significance labels. The authors should perform statistical analysis to demonstrate that Hm-oscar-overexpressed male embryos have higher levels of Z-linked gene expression.

(3) The authors demonstrated that Hm-Oscar suppresses the masculinizing functions of lepidopteran Masc in BmN-4 cells derived from the female ovaries of Bombyx mori. They should clarify why this cell line was chosen and its biological relevance. Additionally, they should explain the rationale for evaluating the expression levels of the male-specific BmIMP variant and whether it is equivalent to dsx.

(4) Although the authors show that Hm-oscar is involved in Wolbachia-induced MK in Homona magnanima and interacts with the sex determination system in lepidopteran insects, the precise molecular mechanism of Hm-oscar-induced MK remains unclear. Further studies are needed to elucidate how Hm-oscar regulates Homona magnanima genes to induce MK, though this may be beyond the scope of the current manuscript.

Reviewer #3 (Public review):

Summary:

Overall, this is a clearly written manuscript with nice hypothesis testing in a non-model organism that addresses the mechanism of Wolbachia-mediated male killing. The authors aim to determine how five previously identified male-killing genes (encoded in the prophage region of the wHm Wolbachia strain) impact the native host, Homona magnanima moths. This work builds on the authors' previous studies in which:
(1) They tested the impact of these same wHm genes via heterologous expression in Drosophila melanogaster.
(2) They examined the activity of other male-killing genes (e.g., from the wFur Wolbachia strain in its native host: Ostrinia furnacalis moths).

Advances here include identifying which wHm gene most strongly recapitulates the male-killing phenotype in the native host (rather than in Drosophila), and the finding that the Hm-Oscar protein has the potential for male-killing in a diverse set of lepidopterans, as inferred by the cell-culture assays.

Strengths:

Strengths of the manuscript include the reverse genetics approaches to dissect the impact of specific male-killing loci, and the use of a "masculinization" assay in Lepidopteran cell lines to determine the impact of interactions between specific masc and oscar homologs.

Weaknesses:

My major comments are related to the lack of statistics for several experiments (and the data normalization process), and opportunities to make the manuscript more broadly accessible.

The manuscript I think would be much improved by providing more details regarding some of the genes and cross-lineage comparisons. I know some of this is reported in previous publications, but some summary and/or additional analysis would make this current manuscript much more approachable for a broader audience, and help guide readers to specific important findings. For example, a graphic and/or more detail on how the wmk/oscar homologs (within and across Wolbachia strains) differ (e.g., domains, percent divergence, etc) would be helpful for contextualizing some of the results. I recognize the authors discuss this in parts (e.g., lines 223-227), but it does require some bouncing between sections to follow. Similarly, the experiments presented in Figure 4 indicate that Hm-oscar has broad spectrum activity: how similar are the masc proteins from these various lepidopterans? Are they highly conserved? Rapidly evolving? Do the patterns of masc protein evolution provide any hints at how Oscar might be interacting with masc?

It is clear from Figure 1 that the combinations of wmk homologs do not cause male killing on their own. Did the authors test if any of the wmk homologs impact the MK phenotype of oscar? It looks like a previous study tested this in wFur (noted in lines 250-252), but given that the authors also highlight the differences between the wFur-oscar and Hm-oscar proteins, this may be worth testing in this system. Related to this, what is the explanation for why there would be 4 copies of wmk in Hm?

Why are some of the broods male-biased (2/3) rather than ~50:50? (Lines 170-175, Figure 2a). For example, there is a strong male bias in un-hatched oscar-injected and naturally infected embryos, whereas the control uninfected embryos have normal 50:50 sex ratios. It is difficult to interpret the rate of male-killing given that the sex ratios of different sets of zygotes are quite variable.

Figure 2b - it appears there are both male and female bands in the HmOsc male lane. I think this makes sense (likely a partial phenotype due to the nature of the overexpression approach), but this is worth highlighting, especially in the context of trying to understand how much of the MK phenotype might be recapitulated through these methods. Related, there is no negative control for this PCR.

It appears the RNA-seq analysis (Figure 3) is based on a single biological replicate for each condition. And, there are no statistical comparisons that support the conclusions of a shift in dosage compensation. Finally, it is unclear what exactly is new data here: the authors note "The expression data of the wHm-t-infected and non-infected groups were also calculated based on the transcriptome data included in Arai et al. (2023a)" - So, are the data in Figure 3c and 3d a re-print of previous data? The level of dosage compensation inferred by visually comparing the control conditions in 3b and 3d does not appear consistent. With only one biological replicate library per condition, what looks like a re-print of previous data, and no statistical comparisons, this is a weakly supported conclusion.

In Figure 4: There are no statistics to support the conclusions presented here. Additionally, the data have gone through a normalization process, but it is difficult to follow exactly how this was done. The control conditions appear to always be normalized to 100 ("The expression levels of BmImpM in the Masc and Hm-Oscar/Oscar co-transfected cells were normalized by setting each Masc-transfected cell as 100"). I see two problems with this approach:
(1) This has eliminated all of the natural variation in BmImpM expression, which is likely not always identical across cells/replicates.
(2) How then was the percentage of BmImpM calculated for each of the experimental conditions? Was each replicate sample arbitrarily paired with a control sample? This can lead to very different outcomes depending on which samples are paired with each other. The most appropriate way to calculate the change between experimental and control would be to take the difference between every single sample (6 total, 3 control, 3 experimental) and the mean of the control group. The mean of the control can then be set at 100 as the authors like, but this also maintains the variability in the dataset and then eliminates the issue of arbitrary pairings. This approach would also then facilitate statistical comparisons which is currently missing.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation