Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorPaul BarberKing's College London, London, United Kingdom
- Senior EditorAlbert CardonaUniversity of Cambridge, Cambridge, United Kingdom
Reviewer #2 (Public review):
Summary:
Liu et al investigated the performance of a novel imaging technique called RIM-Deep to enhance the imaging depth for cleared samples. Usually, the imaging depth using the classical confocal microscopy sample chamber is limited due to optical aberrations, resulting in loss of resolution and image quality. To overcome this limitation and increase depth, they generated a special imaging chamber, that is affixed to the objective and filled with a solution matching the refractive indices to reduce aberrations. Importantly, the study was conducted using a standard confocal microscope, that has not been modified apart from exchanging the standard sample chamber with the RIM-Deep sample holder. Upon analysing the imaging depth, the authors claim that the RIM-Deep method increased the depth from 2 mm to 5 mm. In summary, RIM-Deep has the potential to significantly enhance imaging quality of thick samples on a low budget, making in-depth measurements possible for a wide range of researchers that have access to an inverted confocal microscope.
Strengths:
The authors used different clearing methods to demonstrate the suitability of RIM-Deep for various sample preparation protocols with clearing solutions of different refractive indices. They clearly demonstrate that the RIM-Deep chamber is compatible with all 3 methods. Brain samples are characterized by complex networks of cells and are often hard to visualize. Despite the dense, complex structure of brain tissue, the RIM-Deep method generated high-quality images of all 3 samples given. As the authors already stated, increasing imaging depth often goes hand in hand with purchasing expensive new equipment, exchanging several microscopy parts or purchasing a new microscopy set-up. Innovations, such as the RIM-Deep chamber, hence, might pave the way for cost-effective imaging and expand the applicability of an inverted confocal microscope.
Weaknesses:
(1) However, since this study introduces a novel imaging technique, and therefore, aims to revolutionize the way of imaging large samples, additional control experiments would strengthen the data. From the 3 clearing protocol used (CUBIC, MACS and iDISCO), only the brain section from Macaca fascicularis cleared with iDISCO was imaged with the standard chamber and the RIM-Deep method. This comparison indeed shows that the imaging depth thereby increases more than 2-fold, which is a significant enhancement in terms of microscopy. However, it would have been important to evaluate and show the difference of the imaging depth also on the other two samples, since they were cleared with different protocols and, thus, treated with clearing solutions of different refractive indices compared to iDCISCO.
(2) The description of the figures and figure panels should be improved for a better understanding of the experiments performed and the thus resulting images/data.
(3) While the authors used a Nikon AX inverted laser scanning confocal microscope, the study would highly benefit from evaluating the performance of the RIM-Deep method using other inverted confocal microscopes or even wide-field microscopes.
Comments on Revision:
Regarding point 1)
Within the revised manuscript, Liu et al focussed on a more detailed comparison of the standard vs the RIM-Deep method of samples cleared with the 3 different methods.
Regarding point 2)
The revised description of the figures results in a better understanding of the data.
Regarding point 3)
The authors tested their method on different microscopic setups to show the compatibility.
Summary: the revised manuscript addressed all previously mentioned points.