Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorMoses ChaoNew York University Langone Medical Center, New York, United States of America
- Senior EditorSacha NelsonBrandeis University, Waltham, United States of America
Reviewer #1 (Public Review):
Summary:
In this work, Ritchie and colleagues explore functional consequences of neuronal over-expression or deletion of the MAP3K DLK that their labs and others have strongly implicated in both axon degeneration, neuronal cell death, and axon regeneration. Their recent work in eLife (Li, 2021) showed that inducible over-expression of DLK (or the related LZK) induces neuronal death in the cerebellum. Here, they extend this work to show that inducible over-expression in Vglut1+ neurons also kills excitatory neurons in hippocampal CA1, but not CA3. They complement this very interesting finding with translatomics to quantify genes whose mRNAs are differentially translated in the context of DLK over-expression or knockout, the latter manipulation having little to no effect on the phenotypes measured. The authors note that several genes and pathways are differentially regulated according to whether DLK is over-expressed or knocked out. They note DLK-dependent changes in genes related to synaptic function and the cytoskeleton and ultimately relate this in cultured neurons to findings that DLK over-expression negatively impacts synapse number and changes microtubules and neurites, though with a less obvious correlation.
Strengths:
This work represents a conceptual advance in defining DLK-dependent changes in translation. Moreover, the finding that DLK may differentially impact neuronal death will become the basis for future studies exploring whether DLK contributes to differential neuronal susceptibility to death, which is a broadly important topic.
Weaknesses:
This seems like two works in parallel that the authors have not yet connected. First is that DLK affects the translation of an interesting set of genes, and second, that DLK(OE) kills some neurons, disrupts their synapses, and affects neurite growth in culture.
Specific questions:
(1) Is DLK effectively knocked out? The authors reference the floxxed allele in their 2016 work (PMID: 27511108), however, the methods of this paper say that the mouse will be characterized in a future publication. Has this ever been published? The major concern is that here the authors show that Cre-mediated deletion results in a smaller molecular weight protein and the maintenance of mRNA levels.
(2) Why does DLK(OE) not kill CA3 neurons? The phenomenon is clear but there is no link to gene expression changes. In fact, the highlighted transcript in this work, Stmn4, changes in a DLK-dependent manner in CA3.
(3) Why are whole hippocampi analyzed to IP ribosome-associated mRNAs? The authors nicely show a differential effect of DLK on CA1 vs CA3, but then - at least according to their methods ¬- lyse whole hippocampi to perform IP/sequencing. Their data are therefore a mix of cells where DLK does and does not change cell death. The key issue is whether DLK does/does not have an effect based on the expression changes it drives.
(4) Is the subtle decrease in synapse number (Basson/Homer co-loc.) in the DLK (OE) simply a function of neurons (and their synapses, presumably) having died? At the P15 time point that the authors choose because cell death is minimal, there is still a ~25% reduction in CA1 thickness (Figure 2B), which is larger than the ~15% change in synapses (Figure 5H) they describe.
Reviewer #2 (Public Review):
This manuscript describes the impact of deleting or enhancing the expression of the neuronal-specific kinase DLK in glutamatergic hippocampal neurons using clever genetic strategies, which demonstrates that DLK deletion had minimal effects while overexpression resulted in neurodegeneration in vivo. To determine the molecular mechanisms underlying this effect, ribotag mice were used to determine changes in active translation which identified Jun and STMN4 as DLK-dependent genes that may contribute to this effect. Finally, experiments in cultured neurons were conducted to better understand the in vivo effects. These experiments demonstrated that DLK overexpression resulted in morphological and synaptic abnormalities.
Strengths:
This study provides interesting new insights into the role of DLK in the normal function of hippocampal neurons. Specifically, the study identifies:
(1) CA1 vs CA3 hippocampal neurons have differing sensitivity to increased DLK signaling.
(2) DLK-dependent signaling in these neurons is similar to but distinct from the downstream factors identified in other cell types, highlighted by the identification of STMN4 as a downstream signal.
(3) DLK overexpression in hippocampal neurons results in signaling that is similar to that induced by neuronal injury.
The study also provides confirmatory evidence that supports previously published work through orthogonal methods, which adds additional confidence to our understanding of DLK signaling in neurons. Taken together, this is a useful addition to our understanding of DLK function.
Weaknesses:
There are a few weaknesses that limit the impact of this manuscript, most of which are pointed out by the authors in the discussion. Namely:
(1) It is difficult to distinguish whether the changes in the translatome identified by the authors are DLK-dependent transcriptional changes, DLK-dependent post-transcriptional changes or secondary gene expression changes that occur as a result of the neurodegeneration that occurs in vivo. Additional expression analysis at earlier time points could be one method to address this concern.
(2) Related to the above, it is difficult to conclusively determine from the current data whether the changes in synaptic proteins observed in vivo are a secondary result of neuronal degeneration or a primary impact on synapse formation. The in vitro studies suggest this has the potential to be a primary effect, though the difference in experimental paradigm makes it impossible to determine whether the same mechanisms are present in vitro and in vivo.
(3) The phenotype of DLK cKO mice is very subtle (consistent with previous reports) and while the outcome of increased DLK levels is interesting, the relevance to physiological DLK signaling is less clear. What does seem possible is that increased DLK may phenocopy other neuronal injuries but there are no real comparisons to directly address this in the manuscript. It would be helpful for the authors to provide this analysis as well as a table with all of the translational changes along with fold changes.
(4) For the in vivo experiments, it is unclear whether multiple sections from each animal were quantified for each condition. More information here would be helpful and it is important that any quantification takes multiple sections from each animal into account to account for natural variability.
Reviewer #3 (Public Review):
Dr Jin and colleagues revisit DLK and its established multifactorial roles in neuronal development, axonal injury, and neurodegeneration. The ambitious aim here is to understand the DLK-dependent gene network in the brain and, to pursue this, they explore the role of DLK in hippocampal glutamatergic neurons using conditional knockout and induced overexpression mice. They produce evidence that dorsal CA1 and dentate gyrus neurons are vulnerable to elevated expression of DLK, while CA3 neurons appear unaffected. Then they identify the DLK-dependent translatome featured by conserved molecular signatures and cell-type specificity. Their evidence suggests that increased DLK signaling is associated with possible STMN4 disruptions to microtubules, among else. They also produce evidence on cultured hippocampal neurons showing that expression levels of DLK are associated with changes in neurite outgrowth, axon specification, and synapse formation. They posit that downstream translational events related to DLK signaling in hippocampal glutamatergic neurons are a generalizable paradigm for understanding neurodegenerative diseases.
Strengths
This is an interesting paper based on a lot of work and a high number of diverse experiments that point to the pervasive roles of DLK in the development of select glutamatergic hippocampal neurons. One should applaud the authors for their work in constructing sophisticated molecular cre-lox tools and their expert Ribotag analysis, as well as technical skill and scholarly treatment of the literature. I am somewhat more skeptical of interpretations and conclusions on spatial anatomical selectivity without stereological approaches and also going directly from (extremely complex) Ribotag profiling patterns to relevance based on immunohistochemistry and no additional interventions to manipulate (e.g. by knocking down or blocking) their top Ribotag profile hits. Also, it seems to this reviewer that major developmental claims in the paper are based on gene translational profiling dependent on DLK expression, not DLK activation, despite some evidence in the paper that there is a correlation between the two. Therefore, observed patterns and correlations may or may not be physiologically or pathologically relevant. Generalizability to neurodegenerative diseases is an overreach not justified by the scope, approach, and findings of the paper.
Weaknesses and Suggestions:
The authors state that the rationale for the translatomic studies is to "to gain molecular understanding of gene expression associated with DLK in glutamatergic neurons" and to characterize the "DLK-dependent molecular and cellular network", However, a problem with the experimental design is the selection of an anatomical region at a time point featured by active neurodegeneration. Therefore, it is not straightforward that the differentially expressed genes or pathways caused by DLK overexpression changes could be due to processes related to neurodegeneration. Indeed, the authors find enrichment of signals related to pathways involved in extracellular matrix organization, apoptosis, unfolded protein responses, the complement cascade, DNA damage responses, and depletion of signals related to mitochondrial electron transport, etc., all of which could be the consequence of neurodegeneration regardless of cause. A more appropriate design to discover DLK-dependent pathways might be to look at a region and/or a time point that is not confounded by neurodegeneration.
In a related vein, the authors ask "if the differentially expressed genes associated with DLK(iOE) might show correlation to neuronal vulnerability" and, to answer this question, they select the set of differentially expressed genes after DLK overexpression and assess their expression patterns in various regions under normal conditions. It looks to me that this selection is already confounded by neurodegeneration which could be the cause for their downregulation. Therefore, such gene profiles may not be directly linked to neuronal vulnerability. A similar issue also relates to the conclusion that "...the enrichment of DLK-dependent translation of genes in CA1 suggests that the decreased expression of these genes may contribute to CA1 neuron vulnerability to elevated DLK".
To understand the role and relevance of the DLK overexpression model, there should be a discussion of to what extent it corresponds to endogenous levels of DLK expression or DLK-MAPK pathway activation under baseline or pathological conditions.
The authors posit that "dorsal CA1 neurons are vulnerable to elevated DLK expression, while neurons in CA3 appear largely resistant to DLK overexpression". This statement assumes that DLK expression levels start at a similar baseline among regions. Do the authors have any such data? Ideally, they should show whether DLK expression and p-c-Jun (as a marker of downstream DLK signaling) are the same or different across regions in both WT and overexpression mice. For example, what are the DLK/p-c-Jun expression levels in regions other than CA1 in Supplementary Figures 2-3 and how do they compare with each other? Normalization to baseline for each region does not allow such a comparison. Also, in Supplementary Figure 6, analyses and comparisons between regions are done at a time point when degeneration has already started. Ideally, these should be done at P10.
Illustration of proposed selective changes in hippocampal sector volume needs to be very carefully prepared in view of the substantial claims on selective vulnerability. In 2A under P15 and especially P60, it is difficult to see the difference - this needs lower magnification and a lot of care that anteroposterior levels are identical because hippocampal sector anatomy and volumes of sectors vary from level to level. One wonders if the cortex shrinks, too. This is important.
One cannot be sure that there is selective death of hippocampal sectors with DLK overexpression versus, say, rearrangement of hippocampal architecture. One may need stereological analysis, otherwise this substantial claim appears overinterpreted.
Is the GFAP excess reflective of neuroinflammation? What do microglial markers show? The presence of neuroinflammation does not bode well with apoptosis. Speaking of which, TUNEL in one cell in Supplementary Figure 4E is not strong evidence of a more widespread apoptotic event in CA1.
In several places in the paper (as illustrated in Figure 4B, Supplementary Figure 2B, etc.): the unit of biological observation in animal models is typically not a cell, but an organism, in which averaged measures are generated. This is a significant methodological problem because it is not easy to sample neurons without involving stereological methods. With the approach taken here, there is a risk that significance may be overblown.
Other Comments and Questions:
Supplementary Figure 9: The authors state that data points are shown for individual ROIs - ideally, they should also show averages for biological replicates. Can the authors confirm that statistical analyses are based on biological replicates (mice) and not ROIs?
For in vitro experiments, what is the effect of DLK overexpression on neuronal viability and density? Could these variables confound effects on synaptogenesis/synapse maturation?
Correlations between c-jun expression and phosphorylation are extremely important and need to be carefully and convincingly documented. I am a bit concerned about Supplementary Figure 6 images, especially 6B-CA1 (no difference between control and KO, too small images) and 6D (no p-c-Jun expression at all anywhere in the hippocampus at P15?).