PA28γ promotes the malignant progression of tumor by elevating mitochondrial function via C1QBP

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
  2. Department of Stomatology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
  3. State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China

Peer review process

Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Sameh Ali
    Children's Cancer Hospital Egypt, Cairo, Egypt
  • Senior Editor
    Richard White
    University of Oxford, Oxford, United Kingdom

Reviewer #2 (Public review):

This manuscript determines how PA28g, a proteasome regulator that is overexpressed in tumors, and C1QBP, a mitochondrial protein for maintaining oxidative phosphorylation that plays a role in tumor progression, interact in tumor cells to promote their growth, migration and invasion. Evidence for the interaction and its impact on mitochondrial form and function was provided although it is not particularly strong.

The revised manuscript corrected mislabeled data in figures and provides more details in figure legends. Misleading sentences and typos were corrected. However, key experiments that were suggested in previous reviews were not done, such as making point mutations to disrupt the protein interactions and assess the consequence on protein stability and function. Results from these experiments are critical to determine whether the major conclusions are fully supported by the data.

The second revision of the manuscript included the proximity ligation data to support the PA28g-C1QBP interaction in cells. However, the method and data were not described in sufficient detail for readers to understand. The revision also includes the structural models of the PA28g-C1QBP complex predicted by AlphaFold. However, the method and data were not described with details for readers to understand how this structural modeling was done, what is the quality of the resulting models, and the physical nature of the protein-protein interaction such as what kind of the non-covalent interactions exist in the interface of the protein complexes. Furthermore, while the interactions mediated by the protein fragments were tested by pull-down experiments, the interactions mediated by the three residues were not tested by mutagenesis and pull-down experiments. In summary, the revision was improved, but further improvement is needed

Author response:

The following is the authors’ response to the previous reviews.

Public Reviews:

Reviewer #1 (Public review):

Comment of Review of Revised Version:

Although the authors have partly corrected the manuscript by removing the mislabeling in their Co-IP experiments, my primary concern on the actual functional connotations and direct interaction between PA28y and C1QBP still remains unaddressed. As already mentioned in my previous review, since the core idea of the work is PA28y's direct interaction with C1QBP, stabilizing it, the same should be demonstrated in a more convincing manner.

My other observation on the detection of C1QBP as a doublet has been addressed by usage of anti-C1QBP Monoclonal antibody against the polyclonal one used before. C1QBP doublets have not been observed in the present case.

The authors have also worked on the presentation of the background by suitably modifying the statements and incorporating appropriate citations.

However, the authors are requested to follow the recommendations provided to them by the reviewers to address the major concerns.

Thank you very much for your comments. We appreciate your concerns regarding the need for more direct evidence to support the stabilizing interaction between PA28γ and C1QBP. In response to your feedback, we have taken additional steps to provide more convincing evidence of this interaction.

To complement our existing pull-down and Co-IP experiments, we utilized AlphaFold 3 to predict the three-dimensional structure of the PA28γ-C1QBP complex. The predicted model reveals specific residues and interfaces that are likely involved in the direct interaction between PA28γ and C1QBP. Our analysis indicates that this interaction may depend on amino acids 1-167 and 1-213 of C1QBP (Revised Appendix Figure 1E-H). Furthermore, aspartate (ASP), as the 177th amino acids of PA28γ, was predicted to interact with the 76th amino acid threonine (THR) and the 78th amino acid glycine (GLY) of C1QBP (Revised Appendix Figure 1I). This structural insight was further validated by our immunoprecipitation experiments (Revised Figure 1J). These findings provide a molecular basis for the observed stabilizing effect and suggest potential mechanisms by which PA28γ influences C1QBP stability. Specifically, the identified interaction sites offer clues into how PA28γ may stabilize C1QBP at the molecular level.

Furthermore, we performed proximity ligation assays (PLA) to detect in situ interactions between PA28γ and C1QBP at the single-cell level. PLA results clearly demonstrate the presence of PA28γ-C1QBP complexes within cells, providing direct evidence of their physical interaction (Revised Figure 1D). This approach overcomes some of the limitations associated with traditional IP experiments and confirms the direct nature of the interaction.

In summary, the integration of AlphaFold 3 predictions, PLA data, and our previous Pull-down and Co-IP experiments provides robust and direct evidence for a stable interaction between PA28γ and C1QBP. We believe that these additional findings significantly reinforce our conclusions and effectively address the concerns raised by the reviewers. Once again, thank you for your valuable feedback, which has been instrumental in refining and enhancing our study.

Reviewer #2 (Public review):

Comment of Review of Revised Version:

Weaknesses:

Many data sets are shown in figures that cannot be understood without more descriptions either in the text or the legend, e.g., Fig. 1A. Similarly, many abbreviations are not defined.

The revision addressed these issues.

Some of the pull-down and coimmunoprecipitation data do not support the conclusion about the PA28g-C1QBP interaction. For example, in Appendix Fig. 1B the Flag-C1QBP was detected in the Myc beads pull-down when the protein was expressed in the 293T cells without the Myc-PA28g, suggesting that the pull-down was not due to the interaction of the C1QBP and PA28g proteins. In Appendix Fig. 1C, assume the SFB stands for a biotin tag, then the SFB-PA28g should be detected in the cells expressing this protein after pull-down by streptavidin; however, it was not. The Western blot data in Fig. 1E and many other figures must be quantified before any conclusions about the levels of proteins can be drawn.

The revision addressed these problems.

The immunoprecipitation method is flawed as it is described. The antigen (PA28g or C1QBP) should bind to the respective antibody that in turn should binds to Protein G beads. The resulting immunocomplex should end up in the pellet fraction after centrifugation, and analyzed further by Western blot for coprecipitates. However, the method in the Appendix states that the supernatant was used for the Western blot.

The revision corrected this method.

To conclude that PA28g stabilizes C1QBP through their physical interaction in the cells, one must show whether a protease inhibitor can substitute PA28q and prevent C1QBP degradation, and also show whether a mutation that disrupt the PA28g-C1QBP interaction can reduce the stability of C1QBP. In Fig. 1F, all cells expressed Myc-PA28g. Therefore, the conclusion that PA28g prevented C1QBP degradation cannot be reached. Instead, since more Myc-PA28g was detected in the cells expressing Flag-C1QBP compared to the cells not expressing this protein, a conclusion would be that the C1QBP stabilized the PA28g. Fig. 1G is a quantification of a Western blot data that should be shown.

The binding site for PA28g in C1QBP was mapped to the N-terminal 167 residues using truncated proteins. One caveat would be that some truncated proteins did not fold correctly in the absence of the sequence that was removed. Thus, the C-terminal region of the C1QBP with residues 168-283 may still bind to the PA29g in the context of full-length protein. In Fig. 1I, more Flag-C1QBP 1-167 was pull-down by Myc-PA28g than the full-length protein or the Flag-C1QBP 1-213. Why?

The interaction site in PA28g for C1QBP was not mapped, which prevents further analysis of the interaction. Also, if the interaction domain can be determined, structural modeling of the complex would be feasible using AlphaFold2 or other programs. Then, it is possible to test point mutations that may disrupt the interaction and if so, the functional effect.

The revision added AlphaFold models for the protein interaction. However, the models were not analyzed and potential mutations that would disrupt the interact were not predicted, made and tested. The revision did not addressed the request for the protease inhibitor.

Thank you for your insightful comments regarding the binding site of PA28γ in C1QBP. We appreciate your concern about the potential misfolding of truncated proteins and the possible interaction between the C-terminal region (residues 168-283) of C1QBP and PA28γ in the context of full-length protein.

To address these concerns, we have conducted additional analyses and experiments to provide a more comprehensive understanding of the interaction between PA28γ and C1QBP. Using AlphaFold 3, we predicted the three-dimensional structure of the PA28γ-C1QBP complex. The model reveals specific residues and interfaces that are likely involved in the direct interaction between PA28γ and C1QBP. Notably, our structural analysis indicates that the interaction may primarily depend on amino acids 1-167 and 1-213 of C1QBP (Revised Appendix Figure 1E-H). Furthermore, aspartate (ASP), as the 177th amino acids of PA28γ, was predicted to interact with the 76th amino acid threonine (THR) and the 78th amino acid glycine (GLY) of C1QBP (Revised Appendix Figure 1I). This prediction supports the idea that the N-terminal region of C1QBP is crucial for its interaction with PA28γ. Regarding the observation in old Figure 1I (Revised Figure 1J), where more Flag-C1QBP 1-167 was pulled down by Myc-PA28γ compared to the full-length protein or Flag-C1QBP 1-213, we believe this can be explained by several factors:

A. The truncation of C1QBP to residues 1-167 may expose key interaction sites that are partially obscured in the full-length protein. This enhanced accessibility could lead to stronger binding affinity and higher pull-down efficiency.

B. While it is possible that some truncated proteins do not fold correctly, our data suggest that the N-terminal fragment (1-167) retains sufficient structural integrity to interact effectively with PA28γ. The increased pull-down of this fragment suggests that it captures the essential elements required for binding.

C. The C-terminal region (168-283) might exert steric hindrance or allosteric effects on the N-terminal binding site in the context of the full-length protein. This interference could reduce the overall binding efficiency, leading to less pull-down of full-length C1QBP compared to the truncated version.

Compared with the control group, the presence of Myc-PA28γ significantly increased the expression level of Flag-C1QBP (r Revised Figure 1G). Gray value analysis showed that in cells transfected with Myc-PA28γ, the decay rate of Flag-C1QBP was significantly slower than that of the control group (Revised Figure 1H), suggesting that PA28γ can delay the protein degradation of C1QBP and stabilize its protein level. This indicates that an increase in the level of PA28γ protein can significantly enhance the expression level of C1QBP protein, while PA28γ can slow down the degradation rate of C1QBP and improve its stability. In addition, our western blot analysis also proved that PA28γ could still prevent the degradation of C1QBP under the action of proteasome inhibitor MG-132 (Revised Appendix Figure 1D). Moreover, PA28γ could not stabilize the mutation of C-terminus of C1QBP (amino acids 94-282), which was not the interaction domain of PA28γ-C1QBP (Revised Figure 1K).

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation