Assessing the balance between excitation and inhibition in chronic pain through the aperiodic component of EEG

  1. Department of Neurology, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
  2. TUM-Neuroimaging Center, TUM School of Medicine and Health, TUM, Munich, Germany
  3. Center for Interdisciplinary Pain Medicine, TUM School of Medicine and Health, TUM, Munich, Germany
  4. Department of Psychosomatic Medicine and Psychotherapy, School of Medicine and Health, TUM, Munich, Germany
  5. Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    José Biurrun Manresa
    National Scientific and Technical Research Council (CONICET), National University of Entre Ríos (UNER), Oro Verde, Argentina
  • Senior Editor
    Christian Büchel
    University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Reviewer #1 (Public review):

Summary:

In this study, Avila et al. tested the hypothesis that chronic pain states are associated with changes in the excitability of the medial prefrontal cortex (mPFC). The authors used the slope of the aperiodic component of the EEG power spectrum (= the aperiodic exponent) as a novel, non-invasive proxy for the cortical excitation-inhibition ratio. They performed source localization to estimate the EEG signals generated specifically by the mPFC. By pooling resting-state EEG recordings from three existing datasets, the authors were able to compare the aperiodic exponent in the mPFC and across the whole brain (at all modeled cortical sources) between 149 chronic pain patients and 115 healthy controls. Additionally, they assessed the relationship between the aperiodic exponent and pain intensity reported by the patients. To account for heterogeneity in pain etiology, the analysis was also performed separately for two patient subgroups with different chronic pain conditions (chronic back pain and chronic widespread pain). The study found robust evidence against differences in the aperiodic exponent in the mPFC between people with chronic pain and healthy participants, and no correlation was observed between the aperiodic exponent and pain intensity. These findings were consistent across different patient subgroups and were corroborated by the whole-brain analysis.

Strengths:

The study is based on sound scientific reasoning and rigorously employs suitable methods to test the hypothesis. It follows a pre-registered protocol, which greatly increases the transparency and, consequently, the credibility of the reported results. In addition to the planned steps, the authors used a multiverse analysis to ensure the robustness of the results across different methodological choices. I find this particularly interesting, as the EEG aperiodic exponent has only recently been linked to network excitability, and the most appropriate methods for its extraction and analysis are still being determined. The methods are clearly and comprehensively described, making this paper very useful for researchers planning similar studies. The results are convincing, and supported by informative figures, and the lack of the expected difference in mPFC excitability between the tested groups is thoroughly and constructively discussed.

Weaknesses:

Firstly, although I appreciate the relatively large sample size, pooling data recorded by different researchers using different experimental protocols inevitably increases sample variability and may limit the availability of certain measures, as was the case here with the reports of pain intensity in the patient group. Secondly, the analysis heavily relies on the estimation of cortical sources, an approach that offers many advantages but may yield imprecise results, especially when default conduction models, source models, and electrode coordinates are used. In my opinion, this point should be discussed as well.

Reviewer #2 (Public review):

Summary:

This study evaluated the aperiodic component in the medial prefrontal cortex (mPFC) using resting-state EEG recordings from 149 individuals with chronic pain and 115 healthy participants. The findings showed no significant differences in the aperiodic component of the mPFC between the two groups, nor was there any correlation between the aperiodic component and pain intensity. These results were consistent across various chronic pain subtypes and were corroborated by whole-brain analyses. The study's robustness was further reinforced by preregistration and multiverse analyses, which accounted for a wide range of methodological choices.

Strengths:

This study was rigorously conducted, yielding clear and conclusive results. Furthermore, it adhered to stringent open and reproducible science practices, including preregistration, blinded data analysis, and Bayesian hypothesis testing. All data and code have been made openly available, underscoring the study's commitment to transparency and reproducibility.

Weaknesses:

The aperiodic exponent of the EEG power spectrum is often regarded as an indicator of the excitatory/inhibitory (E/I) balance. However, this measure may not be the most accurate or optimal for quantifying E/I balance, a limitation that the authors might consider addressing in the future.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation