In silico screening by AlphaFold2 program revealed the potential binding partners of nuage-localizing proteins and piRNA-related proteins

  1. Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
  2. Cybermedia Center, Osaka University, Osaka, Japan
  3. NEC Solution Innovators, Ltd, Tokyo, Japan
  4. Graduate School of Information Science and Technology, Osaka University, Osaka, Japan

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Andrei Lupas
    Max Planck Institute for Developmental Biology, Tübingen, Germany
  • Senior Editor
    Dominique Soldati-Favre
    University of Geneva, Geneva, Switzerland

Reviewer #1 (Public review):

Summary:

The study investigates protein-protein interactions (PPIs) within the nuage, a germline-specific organelle essential for piRNA biogenesis in Drosophila melanogaster, using AlphaFold2 to predict interactions among 20 nuage-localizing proteins. The authors identify five novel interaction candidates and experimentally validate three of them, including Spindle-E and Squash, through co-immunoprecipitation assays. They confirm the functional significance of these interactions by disrupting salt bridges at the Spn-E_Squ interface. The study further expands its scope to analyze approximately 430 oogenesis-related proteins, validating three additional interaction pairs. A comprehensive screen of around 12,000 Drosophila proteins for interactions with the key piRNA pathway player, Piwi, identifies 164 potential binding partners. Overall, the research demonstrates that in silico approaches using AlphaFold2 can link bioinformatics predictions with experimental validation, streamlining the identification of novel protein interactions and reducing the reliance on extensive experimental efforts. The manuscript is commendably clear and easy to follow; however, areas for improvement should be addressed to enhance its clarity and rigor.

Major Concerns:

(1) While AlphaFold2 was developed and trained primarily for predicting protein structures and their interactions, applying it to predict protein-protein interactions is an extrapolation of its intended use. This introduces several important considerations and risks. First, it assumes that AlphaFold's accuracy in structure prediction extends to interactions, despite not being explicitly trained for this task. Additionally, the assumption that high-scoring models with structural complementarity imply biologically relevant interactions is not always valid. Experimental validation is essential to address these uncertainties, as over-reliance on computational predictions without such validation can lead to false positives and inaccurate conclusions. The authors should expand on the assumptions, limitations, and risks associated with using AlphaFold2 for predicting protein-protein interactions.

(2) The authors experimentally validated three interactions, out of five predicted interactions, using co-immunoprecipitation (co-IP). They attributed the lack of validation for the other two predictions to the limitations of the co-IP method. However, further clarification on the potential limitations of the co-immunoprecipitation behind the negative results would strengthen the conclusions. While co-IP is a widely used technique, it may not detect weak or transient interactions, which could explain the failure to validate some predictions. Suggesting alternative validation methods such as FRET or mass spectrometry could further substantiate the results. On the other hand, AlphaFold2 predictions are not infallible and may generate false positives, particularly when dealing with structurally plausible but biologically irrelevant interactions. By acknowledging both the potential limitations of co-IP and the possibility of false positives from AlphaFold2, the authors can provide a more balanced interpretation of their findings.

(3) In line 143, the authors state that "This approach identified 13 pairs; seven of these were already known to form complexes, confirming the effectiveness of AlphaFold2 in predicting complex formations (Table 2). The highest pcScore pair was the Zuc homodimer, possibly because AlphaFold2 had learned from Zuc homodimer's crystal structure registered in the database." While the authors mentioned the presence of the Zuc homodimer's crystal structure, they do not provide a systematic bioinformatics analysis to evaluate pairwise sequence identity or check for the presence of existing structures for all the proteins or protein pairs (or their homologs) in databases such as the Protein Data Bank (PDB) or Swiss-Model. Conducting such an analysis is critical, as it significantly impacts the novelty and reliability of AlphaFold2 predictions. For instance, high sequence identity between the query proteins could lead to high-scoring models for biologically irrelevant interactions. Including this information would strengthen the conclusions regarding the accuracy and utility of the predictions.

(4) While the manuscript successfully identifies novel protein interactions, the broader biological significance of these interactions remains underexplored. The manuscript could benefit from elaborating on how these findings may contribute to understanding the piRNA pathway and its implications on germline development, transposon repression, and oogenesis.

Reviewer #2 (Public review):

Summary:

In this paper, the authors use AlphaFold2 to identify potential binding partners of nuage localizing proteins.

Strengths:

The main strength of the paper is that the authors experimentally verify a subset of the predicted interactions.

Many studies have been performed to predict protein-protein interactions in various subsets of proteins. The interesting story here is that the authors (i) focus on an organelle that contains quite some intrinsically disordered proteins and (ii) experimentally verify some (but not all) predictions.

Weaknesses:

Identification of pairwise interactions is only a first step towards understanding complex interactions. It is pretty clear from the predictions that some (but certainly not all) of the pairs could be used to build larger complexes. AlphaFold easily handles proteins up to 4-5000 residues, so this should be possible. I suggest that the authors do this to provide more biological insights.

Another weakness is the use of a non-standard name for "ranking confidence" - the author calls it the pcScore - while the name used in AlphaFold (and many other publications) is ranking confidence.

Author response:

Public Reviews:

Reviewer #1 (Public review):

Summary:

The study investigates protein-protein interactions (PPIs) within the nuage, a germline-specific organelle essential for piRNA biogenesis in Drosophila melanogaster, using AlphaFold2 to predict interactions among 20 nuage-localizing proteins. The authors identify five novel interaction candidates and experimentally validate three of them, including Spindle-E and Squash, through co-immunoprecipitation assays. They confirm the functional significance of these interactions by disrupting salt bridges at the Spn-E_Squ interface. The study further expands its scope to analyze approximately 430 oogenesis-related proteins, validating three additional interaction pairs. A comprehensive screen of around 12,000 Drosophila proteins for interactions with the key piRNA pathway player, Piwi, identifies 164 potential binding partners. Overall, the research demonstrates that in silico approaches using AlphaFold2 can link bioinformatics predictions with experimental validation, streamlining the identification of novel protein interactions and reducing the reliance on extensive experimental efforts. The manuscript is commendably clear and easy to follow; however, areas for improvement should be addressed to enhance its clarity and rigor.

Major Concerns:

(1) While AlphaFold2 was developed and trained primarily for predicting protein structures and their interactions, applying it to predict protein-protein interactions is an extrapolation of its intended use. This introduces several important considerations and risks. First, it assumes that AlphaFold's accuracy in structure prediction extends to interactions, despite not being explicitly trained for this task. Additionally, the assumption that high-scoring models with structural complementarity imply biologically relevant interactions is not always valid. Experimental validation is essential to address these uncertainties, as over-reliance on computational predictions without such validation can lead to false positives and inaccurate conclusions. The authors should expand on the assumptions, limitations, and risks associated with using AlphaFold2 for predicting protein-protein interactions.

We appreciate the reviewer's point. The prediction of protein-protein interactions using AlphaFold2 relies on the number of conserved homologous sequences and previous conformational data. We shall add limitations and risks to the AlphaFold2 prediction method in the revised manuscript.

(2) The authors experimentally validated three interactions, out of five predicted interactions, using co-immunoprecipitation (co-IP). They attributed the lack of validation for the other two predictions to the limitations of the co-IP method. However, further clarification on the potential limitations of the co-immunoprecipitation behind the negative results would strengthen the conclusions. While co-IP is a widely used technique, it may not detect weak or transient interactions, which could explain the failure to validate some predictions. Suggesting alternative validation methods such as FRET or mass spectrometry could further substantiate the results. On the other hand, AlphaFold2 predictions are not infallible and may generate false positives, particularly when dealing with structurally plausible but biologically irrelevant interactions. By acknowledging both the potential limitations of co-IP and the possibility of false positives from AlphaFold2, the authors can provide a more balanced interpretation of their findings.

We appreciate the reviewer's point of view. We have used the co-IP method to detect interactions in this study. However, as the reviewer pointed out, it is likely that weak and transient interactions may not be detected. We plan to add a note on the detection limits of the co-IP method and the possibility that AlphaFold2 method produces false positives in the revised manuscript.

(3) In line 143, the authors state that "This approach identified 13 pairs; seven of these were already known to form complexes, confirming the effectiveness of AlphaFold2 in predicting complex formations (Table 2). The highest pcScore pair was the Zuc homodimer, possibly because AlphaFold2 had learned from Zuc homodimer's crystal structure registered in the database." While the authors mentioned the presence of the Zuc homodimer's crystal structure, they do not provide a systematic bioinformatics analysis to evaluate pairwise sequence identity or check for the presence of existing structures for all the proteins or protein pairs (or their homologs) in databases such as the Protein Data Bank (PDB) or Swiss-Model. Conducting such an analysis is critical, as it significantly impacts the novelty and reliability of AlphaFold2 predictions. For instance, high sequence identity between the query proteins could lead to high-scoring models for biologically irrelevant interactions. Including this information would strengthen the conclusions regarding the accuracy and utility of the predictions.

We appreciate the reviewer's critical point. The AlphaFold2 method generates a high confidence score when the 3D structure of the protein of interest, or of proteins with very similar sequences, is solved. We will investigate whether the proteins used in this study are included in the 3D structure database and add the information to the revised manuscript.

(4) While the manuscript successfully identifies novel protein interactions, the broader biological significance of these interactions remains underexplored. The manuscript could benefit from elaborating on how these findings may contribute to understanding the piRNA pathway and its implications on germline development, transposon repression, and oogenesis.

We plan to add to the revise manuscript the potential biological significance of the novel protein-protein interactions presented in this manuscript.

Reviewer #2 (Public review):

Summary:

In this paper, the authors use AlphaFold2 to identify potential binding partners of nuage localizing proteins.

Strengths:

The main strength of the paper is that the authors experimentally verify a subset of the predicted interactions.

Many studies have been performed to predict protein-protein interactions in various subsets of proteins. The interesting story here is that the authors (i) focus on an organelle that contains quite some intrinsically disordered proteins and (ii) experimentally verify some (but not all) predictions.

Weaknesses:

Identification of pairwise interactions is only a first step towards understanding complex interactions. It is pretty clear from the predictions that some (but certainly not all) of the pairs could be used to build larger complexes. AlphaFold easily handles proteins up to 4-5000 residues, so this should be possible. I suggest that the authors do this to provide more biological insights.

We thank the reviewer for his kind suggestions. Although dimer structure predictions were made in this manuscript, if a protein is predicted to interact with two other proteins, it is possible that three proteins could interact. We plan to add such trimer predictions to the revise manuscript.

Another weakness is the use of a non-standard name for "ranking confidence" - the author calls it the pcScore - while the name used in AlphaFold (and many other publications) is ranking confidence.

We take the reviewer’s point and will revise the text accordingly.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation