Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorLynne-Marie PostovitQueens University, Kingston, Canada
- Senior EditorLynne-Marie PostovitQueens University, Kingston, Canada
Reviewer #1 (Public review):
Summary:
IPF is a disease lacking regressive therapies which has a poor prognosis, and so new therapies are needed. This ambitious phase 1 study builds on the authors' 2024 experience in Sci Tran Med with positive results with autologous transplantation of P63 progenitor cells in patients with COPD. The current study suggests that P63+ progenitor cell therapy is safe in patients with ILD. The authors attribute this to the acquisition of cells from a healthy upper lobe site, removed from the lung fibrosis. There are currently no cell-based therapies for ILD and in this regard the study is novel with important potential for clinical impact if validated in Phase 2 and 3 clinical trials.
Strengths:
This study addresses the need for an effective therapy for interstitial lung disease. It offers good evidence that the cells used for therapy are safe. In so doing it addresses a concern that some P63+ progenitor cells may be proinflammatory and harmful, as has been raised in the literature (articles which suggested some P63+ cells can promote honeycombing fibrosis; references 26 &35). The authors attribute the safety they observed (without proof) to the high HOPX expression of administered cells (a marker found in normal Type 1 AECs. The totality of the RNASeq suggests the cloned cells are not fibrogenic. They also offer exploratory data suggesting a relationship between clone roundness and PFT parameters (and a negative association between patient age and clone roundness).
Weaknesses:
The authors can conclude they can isolate, clone, expand, and administer P63+ progenitor cells safely; but with the small sample size and lack of a placebo group, no efficacy should be implied.
Specific points:
(1) The authors acknowledge most study weaknesses including the lack of a placebo group and the concurrent COVID-19 in half the subjects (the high-dose subjects). They indicate a phase 2 trial is underway to address these issues.
(2) The authors suggest an efficacy signal on pages 18 (improvement in 2 subjects' CT scans) and 21 (improvement in DLCO) but with such a small phase 1 study and such small increases in DLCO (+5.4%) the authors should refrain from this temptation (understandable as it is).
(3) Likewise most CT scans were unchanged and those that improved were in the mid-dose group (albeit DLCO improved in the 2 patients whose CT scans improved).
(4) The authors note an impressive 58m increase in 6MWTD in the high-dose group but again there is no placebo group, and the low-dose group has no net change in 6MWTD at 24 weeks.
(5) I also raise the question of the enrollment criteria in which 5 patients had essentially normal DLCO/VA values. In addition there is no discussion as to whether the transplanted stem cells are retained or exert benefit by a paracrine mechanism (which is the norm for cell-based therapies).
Reviewer #2 (Public review):
Summary:
This manuscript describes a first-in-human clinical trial of autologous stem cells to address IPF. The significance of this study is underscored by the limited efficacy of standard-of-care anti-fibrotic therapies and increasing knowledge of the role p63+ stem cells in lung regeneration in ARDS. While models of acute lung injury and p63+ stem cells have benefited from widespread and dynamic DAD and immune cell remodeling of damaged tissue, a key question in chronic lung disease is whether such cells could contribute to the remodeling of lung tissue that may be devoid of acute and dynamic injury. A second question is whether normal regions of the lung in an otherwise diseased organ can be identified as a source of "normal" p63+ stem cells, and how to assess these stem cells given recently identified p63+ stem cell variants emerging in chronic lung diseases including IPF. Lastly, questions of feasibility, safety, and efficacy need to be explored to set the foundation for autologous transplants to meet the huge need in chronic lung disease. The authors have addressed each of these questions to different extents in this initial study, which has yielded important if incomplete information for many of them.
Strengths:
As with a previous study from this group regarding autologous stem cell transplants for COPD (Ref. 24), they have shown that the stem cells they propagate do not form colonies in soft agar or cancers in these patients. While a full assessment of adverse events was confounded by a wave of Covid19 infections in the study participants, aside from brief fevers it appears these transplants are tolerated by these patients.
Weaknesses:
The source of stem cells for these autologous transplants is generally bronchoscopic biopsies/brushings from 5th-generation bronchi. Although stem cells have been cloned and characterized from nasal, tracheal, and distal airway biopsies, the systematic cloning and analysis of p63+ stem cells across the bronchial generations is less clear. For instance, p63+ stem cells from the nasal and tracheal mucosa appear committed to upper airway epithelia marked by 90% ciliated cells and 10% goblet cells (Kumar et al., 2011. Ref. 14). In contrast, p63+ stem cells from distal lung differentiate to epithelia replete with Club, AT2, and AT1 markers. The spectrum of p63+ stem cells in the normal bronchi of any generation is less studied. In the present study, cells are obtained by bronchoscopy from 3-5 generation bronchi and expanded by in vitro propagation. Single-cell RNAseq identifies three clusters they refer to as C1, C2, and C3, with the major C1 cluster said to have characteristics of airway basal cells and C2 possibly the same cells in states of proliferation. Perhaps the most immediate question raised by these data is the nature of the C1/C2 cells. Whereas they are clearly p63/Krt5+ cells as are other stem cells of the airways, do they display differentiation character of "upper airway" marked by ciliated/goblet cell differentiation or those of the lung marked by AT2 and AT1 fates? This could be readily determined by 3-D differentiation in so-called air-liquid interface cultures pioneered by cystic fibrosis investigators and should be done as it would directly address the validity of the sourcing protocol for autologous cells for these transplants. This would more clearly link the present study with a previous study from the same investigators (Shi et al., 2019, Ref. 9) whereby distal airway stem cells mitigated fibrosis in the murine bleomycin model. The authors should also provide methods by which the autologous cells are propagated in vitro as these could impact the quality and fate of the progenitor cells prior to transplantation.
The authors should also make a more concerted effort to compare Clusters 1, 2, and 3 with the variant stem cell identified in IPF (Wang et al., 2023, Ref. 27). While some of the markers are consistent with this variant stem cell population, others are not. A more detailed informatics analysis of normal stem cells of the airways and any variants reported could clarify whether the bronchial source of autologous stem cells is the best route to these transplants.
Other than these issues the authors should be commended for these first-in-human trials for this important condition.