A florigen-expressing subpopulation of companion cells expresses other small proteins and reveals a nitrogen-sensitive FT repressor

  1. Department of Biology, University of Washington, Seattle, USA
  2. Center for Gene Research, Nagoya University, Nagoya, Japan
  3. Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
  4. School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
  5. Division of Biological Science, Nara Institute of Science and Technology, Nara, Japan
  6. Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, South Korea
  7. Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
  8. Department of Genome Sciences, University of Washington, Seattle, USA
  9. Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
  10. Institute for Advanced Research (IAR), Nagoya University, Nagoya, Japan
  11. Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
  12. Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
  13. RIKEN Center for Sustainable Resource Science, Yokohama, Japan
  14. School of Biological Sciences, University of California San Diego, La Jolla, USA
  15. Center for Circadian Biology, University of California San Diego, La Jolla, USA
  16. Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Pil Joon Seo
    Seoul National University, Seoul, Korea, the Republic of
  • Senior Editor
    Jürgen Kleine-Vehn
    University of Freiburg, Freiburg, Germany

Reviewer #1 (Public review):

Summary:

The authors revealed the cellular heterogeneity of companion cells (CCs) and demonstrated that the florigen gene FT is highly expressed in a specific subpopulation of these CCs in Arabidopsis. Through a thorough characterization of this subpopulation, they further identified NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1)-like transcription factors as potential new regulators of FT. Overall, these findings are intriguing and valuable, contributing significantly to our understanding of florigen and the photoperiodic flowering pathway. However, there is still room for improvement in the quality of the data and the depth of the analysis. I have several comments that may be beneficial for the authors.

Strengths:

The usage of snRNA-seq to characterize the FT-expressing companion cells (CCs) is very interesting and important. Two findings are novel: 1) Expression of FT in CCs is not uniform. Only a subcluster of CCs exhibits high expression level of FT. 2) Based on consensus binding motifs enriched in this subcluster, they further identify NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1)-like transcription factors as potential new regulators of FT.

Weaknesses:

(1) Title: "A florigen-expressing subpopulation of companion cells". It is a bit misleading. The conclusion here is that only a subset of companion cells exhibit high expression of FT, but this does not imply that other companion cells do not express it at all.
(2) Data quality: Authors opted for fluorescence-activated nuclei sorting (FANS) instead of traditional cell sorting method. What is the rationale behind this decision? Readers may wonder, especially given that RNA abundance in single nuclei is generally lower than that in single cells. This concern also applies to snRNA-seq data. Specifically, the number of genes captured was quite low, with a median of only 149 genes per nucleus. Additionally, the total number of nuclei analyzed was limited (1,173 for the pFT:NTF and 3,650 for the pSUC2:NTF). These factors suggest that the quality of the snRNA-seq data presented in this study is quite low. In this context, it becomes challenging for the reviewer to accurately assess whether this will impact the subsequent conclusions of the paper. Would it be possible to repeat this experiment and get more nuclei?
(3) Another disappointment is that the authors did not utilize reporter genes to identify the specific locations of the FT-high expressing cells (cluster 7 cells) within the CC population in vivo. Are there any discernible patterns that can be observed?
(4) The final disappointment is that the authors only compared FT expression between the nigtQ mutants and the wild type. Does this imply that the mutant does not have a flowering time defect particularly under high nitrogen conditions?

Reviewer #2 (Public review):

This manuscript submitted by Takagi et al. details the molecular characterization of the FT-expressing cell at a single-cell level. The authors examined what genes are expressed specifically in FT-expressing cells and other phloem companion cells by exploiting bulk nuclei and single-nuclei RNA-seq and transgenic analysis. The authors found the unique expression profile of FT-expressing cells at a single-cell level and identified new transcriptional repressors of FT such as NIGT1.2 and NIGT1.4.

Although previous researchers have known that FT is expressed in phloem companion cells, they have tended to neglect the molecular characterization of the FT-expressing phloem companion cells. To understand how FT, which is expressed in tiny amounts in phloem companion cells that make up a very small portion of the leaf, can be a key molecule in the regulation of the critical developmental step of floral transition, it is important to understand the molecular features of FT-expressing cells in detail. In this regard, this manuscript provides insight into the understanding of detailed molecular characteristics of the FT-expressing cell. This endeavor will contribute to the research field of flowering time.

Here are my comments on how to improve this manuscript.

(1) The most noble finding of this manuscript is the identification of NTGI1.2 as the upstream regulator of FT-expressing cluster 7 gene expression. The flowering phenotypes of the nigtQ mutant and the transgenic plants in which NIGT1.2 was expressed under the SUC2 gene promoter support that NIGT1.2 functions as a floral repressor upstream of the FT gene. Nevertheless, the expression patterns of NIGT1.2 genes do not appear to have much overlap with those of NIGT1.2-downstream genes in the cluster 7 (Figs S14 and F3). An explanation for this should be provided in the discussion section.
(2) To investigate gene expression in the nuclei of specific cell populations, the authors generated transgenic plants expressing a fusion gene encoding a Nuclear Targeting Fusion protein (NTF) under the control of various cell type-specific promoters. Since the public audience would not know about NTF without reading reference 16, some explanation of NTF is necessary in the manuscript. Please provide a schematic of constructs the authors used to make the transformants.

Author response:

Reviewer #1 (Public review):

Summary:

The authors revealed the cellular heterogeneity of companion cells (CCs) and demonstrated that the florigen gene FT is highly expressed in a specific subpopulation of these CCs in Arabidopsis. Through a thorough characterization of this subpopulation, they further identified NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1)-like transcription factors as potential new regulators of FT. Overall, these findings are intriguing and valuable, contributing significantly to our understanding of florigen and the photoperiodic flowering pathway. However, there is still room for improvement in the quality of the data and the depth of the analysis. I have several comments that may be beneficial for the authors.

Strengths:

The usage of snRNA-seq to characterize the FT-expressing companion cells (CCs) is very interesting and important. Two findings are novel: 1) Expression of FT in CCs is not uniform. Only a subcluster of CCs exhibits high expression level of FT. 2) Based on consensus binding motifs enriched in this subcluster, they further identify NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1)-like transcription factors as potential new regulators of FT.

We are pleased to hear that reviewer 1 noted the novelty and importance of our work. As reviewer 1 mentioned, we are also excited about the identification of a subcluster of companion cells with very high FT expression. We believe that this work is an initial step to describe the molecular characteristics of these FT-expressing cells. We are also excited to share our new findings on _NIGT1_s as potential FT regulators. We think that this finding attracts broader audiences, as the molecular factor that coordinates plant nutrition status with flowering time remains largely unknown despite its well-known plant phenomenon.

Weaknesses:

(1) Title: "A florigen-expressing subpopulation of companion cells". It is a bit misleading. The conclusion here is that only a subset of companion cells exhibit high expression of FT, but this does not imply that other companion cells do not express it at all.

We agree with this comment, as we also did not intend to say that FT is not produced in other companion cells than the subpopulation we identified. We will revise the title to more accurately reflect the point.

(2) Data quality: Authors opted for fluorescence-activated nuclei sorting (FANS) instead of traditional cell sorting method. What is the rationale behind this decision? Readers may wonder, especially given that RNA abundance in single nuclei is generally lower than that in single cells. This concern also applies to snRNA-seq data. Specifically, the number of genes captured was quite low, with a median of only 149 genes per nucleus. Additionally, the total number of nuclei analyzed was limited (1,173 for the pFT:NTF and 3,650 for the pSUC2:NTF). These factors suggest that the quality of the snRNA-seq data presented in this study is quite low. In this context, it becomes challenging for the reviewer to accurately assess whether this will impact the subsequent conclusions of the paper. Would it be possible to repeat this experiment and get more nuclei?

We appreciate this comment; we noticed that we did not clearly explain the rationale of using single-nucleus RNA sequencing (snRNA-seq) instead of single-cell RNA-seq (scRNA-seq). As reviewer 1 mentioned, RNA abundance in scRNA-seq is higher than in snRNA-seq. To conduct scRNA-seq using plant cells, protoplasting is the necessary step. However, in our study, protoplasting has many drawbacks in isolating our target cells from the phloem. It is technically challenging to efficiently isolate protoplasts from highly embedded phloem companion cells from plant tissues. Usually, it requires a minimum of several hours of enzymatic incubation to protoplast companion cells and the efficiencies of protoplasting these cells are still low. For our analysis, restoring the time information within a day is also crucial. Therefore, we performed more speedy isolation method. In the revision, we will explain our rationale of choosing snRNA-seq due to the technical limitations.

Here, reviewer 1 raised a concern about the quality of our snRNA-seq data, referring to the relatively low readcounts per nucleus. Although we believe that shallow reads do not necessaryily indicate low quality and are confident in the accuracy of our snRNA-seq data, as supported by the detailed follow-up experiments (e.g., imaging analysis in Fig. 4B), we agree that it is important to address this point in the revision and alleviate readers’ concerns regarding the data quality.

(3) Another disappointment is that the authors did not utilize reporter genes to identify the specific locations of the FT-high expressing cells (cluster 7 cells) within the CC population in vivo. Are there any discernible patterns that can be observed?

As we previously showed only limited spatial images of overlap between FT-expressing cells and other cluster 7 gene-expressing cells in Fig. 4B, this comment is understandable. To respond to it, we will include whole leaf images of FT- and cluster 7 gene-expressing cells to assess the spatial overlaps between FT and cluster 7 genes within a leaf.

(4) The final disappointment is that the authors only compared FT expression between the nigtQ mutants and the wild type. Does this imply that the mutant does not have a flowering time defect particularly under high nitrogen conditions?

To answer this question, we will include the flowering time measurement data of the nigtQ mutants grown on the soil with sufficient nitrogen sources.

Reviewer #2 (Public review):

This manuscript submitted by Takagi et al. details the molecular characterization of the FT-expressing cell at a single-cell level. The authors examined what genes are expressed specifically in FT-expressing cells and other phloem companion cells by exploiting bulk nuclei and single-nuclei RNA-seq and transgenic analysis. The authors found the unique expression profile of FT-expressing cells at a single-cell level and identified new transcriptional repressors of FT such as NIGT1.2 and NIGT1.4.

Although previous researchers have known that FT is expressed in phloem companion cells, they have tended to neglect the molecular characterization of the FT-expressing phloem companion cells. To understand how FT, which is expressed in tiny amounts in phloem companion cells that make up a very small portion of the leaf, can be a key molecule in the regulation of the critical developmental step of floral transition, it is important to understand the molecular features of FT-expressing cells in detail. In this regard, this manuscript provides insight into the understanding of detailed molecular characteristics of the FT-expressing cell. This endeavor will contribute to the research field of flowering time.

We are grateful that reviewer 2 recognizes the importance of transcriptome profiling of FT-expressing cells at the single-cell level.

Here are my comments on how to improve this manuscript.

(1) The most noble finding of this manuscript is the identification of NTGI1.2 as the upstream regulator of FT-expressing cluster 7 gene expression. The flowering phenotypes of the nigtQ mutant and the transgenic plants in which NIGT1.2 was expressed under the SUC2 gene promoter support that NIGT1.2 functions as a floral repressor upstream of the FT gene. Nevertheless, the expression patterns of NIGT1.2 genes do not appear to have much overlap with those of NIGT1.2-downstream genes in the cluster 7 (Figs S14 and F3). An explanation for this should be provided in the discussion section.

We agree reviewer 2 that spatial expression patterns of NIGT1.2 and cluster 7 genes do not overlap much, and some discussion should be provided in the manuscript. Although we do not have a concrete answer for this phenomenon, NIGT1.2 may suppress FT gene expression in non-cluster 7 cells to prevent the misexpression of FT. Another possible explanation is that NIGT1.2 negatively affects the formation of cluster 7 cells. If so, cells with high NIGT1.2 gene expression hardly become cluster 7 cells. We will discuss it further in the discussion section in our revised manuscript.

(2) To investigate gene expression in the nuclei of specific cell populations, the authors generated transgenic plants expressing a fusion gene encoding a Nuclear Targeting Fusion protein (NTF) under the control of various cell type-specific promoters. Since the public audience would not know about NTF without reading reference 16, some explanation of NTF is necessary in the manuscript. Please provide a schematic of constructs the authors used to make the transformants.

As reviewer 2 pointed out, we lacked a clear explanation why we used NTF in this study. NTF is the fusion protein that consists of a nuclear envelope targeting domain, GFP, and biotin acceptor peptide. It was originally designed for the INTACT (isolation of nuclei tagged in specific cell types) method that enables us to isolate bulk nuclei from specific tissues. Although our original intention was profiling the bulk transcriptome of mRNAs that exist in nuclei of the FT-expressing cells using INTACT, we utilized our NTF transgenic lines for snRNA-seq analysis. To explain what NTF is to readers, we will include a schematic diagram of NTF.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation