Reconstruction of functional olfactory sensory tissue from embryonic nasal stem cells

  1. Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
  2. Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
  3. Institute for Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Xin Duan
    University of California, San Francisco, San Francisco, United States of America
  • Senior Editor
    Sofia Araújo
    University of Barcelona, Barcelona, Spain

Reviewer #1 (Public review):

Summary:

Olfaction is fundamental to the survival and reproduction of animals, as they rely on olfactory sensory neurons (OSNs) in the olfactory epithelium (OE) to detect volatile chemical cues in their environment. Most mature OSNs adhere to the 'one neuron one receptor' rule, wherein each neuron selects a single receptor for expression from a large repertoire of olfactory receptor genes. The precise regulation of olfactory receptor expression is critical for accurate odorant recognition. Since the seminal discovery of olfactory receptors by Linda Buck and Richard Axel in 1991, substantial efforts have been made to elucidate the mechanisms underlying OSN differentiation and receptor expression. However, these processes remain incompletely understood. The development of in vitro olfactory epithelium organoids offers a promising platform to address these fundamental questions. The in vivo OE is composed of a complex array of cell types, which has posed a significant challenge for recapitulating its structure and function in vitro. Previous attempts to generate olfactory organoids from adult human or mouse OE cells yielded tissue containing OSNs, but these constructs were structurally distinct from the in vivo OE and lacked the characteristic pseudostratified epithelium.

In this study, Kazuya et al. successfully established olfactory epithelium organoids from E13.5 mouse embryonic OE stem cells, which developed into a pseudostratified structure closely resembling the native OE. They further examined the influence of different cultural conditions on OE differentiation, confirming the pivotal role of niche factors in promoting OSN development. Through immunofluorescence staining and single-cell RNA sequencing, they demonstrated that the organoids encompass a diverse range of cell types analogous to those present in the in vivo OE. Notably, calcium imaging revealed that the organoids were functionally responsive to odorants, and single-cell transcriptomic analysis showed that the majority of mature OSNs conformed to the 'one neuron one receptor' rule. Using these organoids, the authors performed a preliminary investigation into the developmental trajectories of OSNs, developed a tool to predict subpopulations of mature OSNs, and identified novel markers associated with OSN maturation. Collectively, the data provide compelling evidence for the reliability and utility of this olfactory organoid model. Further in-depth analyses may enable readers to better assess and utilize this tool to advance the study of olfactory biology.

Strengths:

The authors developed and established olfactory epithelium organoids, with immunofluorescence imaging confirming the presence of a pseudostratified structure similar to that of the in vivo olfactory epithelium, representing a significant advancement. Single-cell sequencing and calcium imaging further demonstrated the utility of these organoids, as they contain multiple cell types analogous to the in vivo olfactory epithelium. Importantly, they are physiologically functional, capable of responding to odor stimuli.

Weakness:

Although the authors have made significant progress in the technique, there are some gaps in understanding its underlying principles. First, it remains unclear what specific characteristics of E13.5 embryonic olfactory stem cells enable them to generate organoids in vitro that more closely resemble the in vivo olfactory epithelium, compared to adult mouse olfactory stem cells. Second, it is not clearly defined which specific cell type(s) from the embryonic olfactory epithelium give rise to these organoids, and the efficiency of organoid formation from the isolated cells also warrants further clarification.

Reviewer #2 (Public review):

Summary:

Suzuki and colleagues aim to develop an in vitro organoid system to recapitulate the developmental process of the olfactory epithelium. The authors have succeeded in using a combination of niche factors to induce organoid development, which gives rise to multiple cell types including those with characteristics of mature olfactory sensory neurons. By comparing different cultural media in inducing lineage specification in the organoids, the authors show that the niche factors play an important role in the neuronal lineage whereas serum promotes the development of the respiratory epithelium. The authors further utilized single-cell RNASeq and trajectory analysis to demonstrate that the organoids recapitulate the developmental process of the olfactory epithelium and that some of the factory sensory neurons express only one receptor type per cell. Using these analyses, the authors proposed that a specific set of guidance modules are associated with individual receptor types to enable the formation of the factory map.

Strengths:

The strength of the paper is that the authors have demonstrated that olfactory epithelium organoids can develop from dissociated cells from embryonic or tissue. This provides a valuable tool for studying the development of processes of the factory epithelium in vitro. Defining various factors in the media that influence the development trajectories of various cell types also provides valuable information to guide further development of the method. Single-cell RNA-Seq experiments provide information about the developmental processes of the olfactory system.

Weaknesses:

The manuscript is also marked by a number of weaknesses. The premise of the studies is not well argued. The authors set out to use organoid culture to study the developmental process in order to unravel the mechanisms of single receptor choice, and its role in setting up the factory map. However, the paper has mostly focused on characterizing the organization rather than providing insights into the problem. The statement that the organoids can develop from single cells is misleading, because it's mostly likely that organoids develop after the dissociated cells form aggregates before developing into organoids. It is not known whether coarsely separated tissue chunks can develop into organoids with the same characteristics. Re-aggregation of the cells to form organoids is in and of itself is interesting. Unfortunately, the heterogeneity of the cells and how they contribute to the development of overnight is not explored. There is also a missed opportunity to compare single-cell RNASeq data from this study with existing ones. The in vitro system is likely to be different from embryonic development. It is critical to compare and determine how much the organoid is recapitulating the development of the OSNs in vivo. There are a number of comprehensive datasets from the OE in addition to that presented in the Fletcher paper. Finally, the quality of the functional assay (calcium imaging) of factory sensory neurons is poor. Experiments are of high quality are needed to verify the results.

Major points:

(1) Adding FBS in organoid culture medium has been shown to negatively affect the organoid formation and growth. Previous OE organoids culture method did not use FBS. Also, day 10 is an odd choice to compare the two conditions after showing day 20 of NF+ culture shows a better differentiation state. It is not known whether and how the differentiation may be different on day 20. Moreover, comparing Figure 2R to 2S, FBS treatment alone appears to have not only more Foxj1+ cells but also more Tuj1+ cells than NFs/FBS. This is inconsistent with the model. The authors should provide statistics for Tuj1+ cells as well.

(2) As opposed to the statement in the manuscript, Plxnb2 had been shown to be expressed by the OSNs (Mclntyre et al. 2010; JNR), specifically in immature OSNs. It would be important to mention that Plxnb2 is expressed in OMP+ OSNs in the OE organoid system and its potential reasons to better guide the readers of the system mimicking the in vivo OSNs. Similarly, OSN expression of Cdh2 has been shown by Akins and colleagues. As Plxnb2 showed an expression pattern (immunofluorescence) with an anterior-posterior axis while Cdh2 expression level was not, it would be informative to show the odorant receptor types regarding the expression pattern of Plxnb2 (versus that of Cdh2) using single cell RNAseq data4.

(3) There is no real layering of the organoids, although some cells show biases toward one side or the other in some regions of the organoid. The authors should not make a sweeping claim that the organoids establish layered structures.

(4) Figure 2P, it is clear whether OMP is present in the cell bodies. The signal is not very convincing. Even the DAPI signal does not seem to be on a comparable scale compared to Figures 2N and 2O.

(5) Annotation of the cell types in different single-cell RNA-Seq analysis. The iOSN is only marked in Figure 3A. In the marker expression panel, it appears that those marked as mOSN have high GAP43, which are an iOSN marker. These discrepancies are not detailed nor discussed.

(6) The authors should merge the single-cell datasets from day 10 organoids cultured in NF-medium and FBS-medium to compare their differences.

(7) The quality of the calcium imaging experiment is poor. Labeling and experimental details are not provided. The concentration of IVA, the manner of its delivery, and delivery duration are not provided. How many ROIs have been imaged, and what percentage of them responded to IVA? Do they respond to more than one odor? Do they respond to repeated delivery? There is no control for solution osmolarity. Cell body response was not recorded. Given that only a small number of cells express a receptor, it seems extraordinary that these axons respond to IVA receptors. The authors should also determine whether IVA receptor genes are found in their dataset.

Reviewer #3 (Public review):

Summary:

The present work by Suzuki et al seeks to develop a new embryonic olfactory epithelium organoid culture model, to study OR gene expression and mechanisms involved in epithelium-to-bulb targeting. They characterize an organoid culture derived from E13 mouse olfactory tissue, using RT-qPCR, immunostaining, limited calcium imaging, and single-cell RNA-seq. Main findings show that the cultures produce major olfactory cell types; many olfactory neurons express a single OR; scSeq analysis identifies transcriptional programs associated with specific OR class expressions that may help define mechanisms involved in projection to specific bulb sites (glomeruli).

Strengths:

The organoid model is generally well-characterized and may be a useful approach for studying this question and other problems, such as basal cell lineage choice or damage and repair mechanisms. Overall, the paper is well-written, and the figures are of high quality.

The cultures, produced from E13 mice, appear to produce HBCs, GBCs, neurons, and non-neural cells, providing an important tool. I think a really interesting question is: when do HBCs first appear in these cultures? Developmentally, in rodents, HBCs do not arise until near the end of gestation, and the OE cell populations are instead made from a more GBC-like cell (keratin negative, p63 negative) that proliferates as an apical or basal progenitor. The cell type and architectural descriptions used here repeatedly are really descriptions of the adult OE, yet the cultures are made from E13 mouse olfactory epithelium. Perhaps an important question could be addressed by this model - how this specific adult reserve epithelial stem cell (the HBC) is generated remains unclear. HBCs are a reserve multipotential cell that reconstitutes the entire olfactory epithelium in adults following severe injury, yet is not present during embryonic development until after the epithelium has been largely generated.

Weaknesses:

The paper should discuss the transcriptional programs identified here that correlate with OR class expression in the context of findings from Tsukahara et al, Cell 2021. Tsukahara identified from in vivo olfactory neuron scSeq fixed gene expression programs defining olfactory neuron position in AP or DV axes correlating highly with OR expression.

While the current findings do define the expression of putative targeting, guidance or adhesion molecules in specific OR-expressing neurons in culture, the current results do not provide any experimental evidence that glomerulus targeting is actually mediated by these factors. Further discussion of this limitation may be helpful, along with a discussion of additional approaches to explore these questions.

Calcium imaging: it is not clear why isovaleric acid was chosen as a stimulus for Ca imaging. Is it's known receptor expressed widely in these cultures? Why not use a cocktail of odorants, to activate a broader range of ORs, as has been widely used in in vitro calcium imaging studies of olfactory neurons? Can you show positive control activation (i.e. high potassium)?

How many unique ORs are identified as expressed in the cultures? Figure 5 indicates only 78 genes. Since mice express about 1200 ORs, is this a limitation? How many replicates (individual cells) are found to express each of the ORs? Again, Figure 5 suggests only 202 cells are OR+? Is this enough to define the gene expression programs reliably associated with a given OR or OR class? More detail on this analysis would be helpful.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation