Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorKavita BabuIndian Institute of Science Bangalore, Bangalore, India
- Senior EditorKate WassumUniversity of California, Los Angeles, Los Angeles, United States of America
Reviewer #1 (Public review):
Summary:
Here the authors present their evidence linking the mitochondrial uniporter (MCU-1) and olfactory adaptation in C. elegans. They clearly demonstrate a behavioral defect of mcu-1 mutants in adaptation over 60 minutes and present evidence that this gene functions in the AWC primary sensory neurons at, or close to, the time of adaptation.
Strengths:
The paper is very well organized and their approach to unpacking the role of mcu-1 mutants in olfactory adaptation is very reasonable. The authors lean into diverse techniques including behavior, genetics, and pharmacological manipulation in order to flesh out their model for how MCU-1 functions in AWC neurons with respect to olfaction.
Weaknesses:
I would like to see the authors strengthen the link between mitochondrial calcium and olfactory adaptation. The authors present some gCaMP data in Figure 5 but it is unclear to me why this tool is not better utilized to explore the mechanism of MCU-1 activity. I think this is very important as the title of the paper states that "mitochondrial calcium modulates.." behavior in AWC and so it would be nice to see more evidence to support this direct connection. I would also like to see the authors place their findings into a model based on previous findings and perhaps examine whether mcu-1 is required for EGL-4 nuclear translocation, which would be straightforward to examine.
Reviewer #2 (Public review):
Summary:
In their manuscript, "Mitochondrial calcium modulates odor-mediated behavioural plasticity in C. elegans", Lee et al. aim to link a mitochondrial calcium transporter to higher-order neuronal functions that mediate memory and aversive learning behaviours. The authors characterise the role of the mitochondrial calcium uniporter, and a specific subunit of this complex, MCU-1, within a single chemosensory neuron (AWCOFF) during aversive odor learning in the nematode. By genetically manipulating mcu-1 as well as using pharmacological activators and blockers of MCU activity, the study presents compelling evidence that the activity of this individual mitochondrial ion transporter in AWCOFF is sufficient to drive animal behaviour through aversive memory formation. The authors show that perturbations to mcu-1 and MCU activity prevent aversive learning to several chemical odors associated with food absence. The authors propose a model, experimentally validated at several steps, whereby an increase in MCU activity during odor conditioning stimulates mitochondrial calcium influx and an increase in mitochondrial reactive oxygen species (mtROS) production, triggering the release of the neuropeptide NLP-1 from AWC, all of which are required to mediate future avoidance behaviour of the chemical odor.
Strengths:
Overall, the authors provided robust evidence that mitochondrial function, mediated through MCU activity, contributes to behavioural plasticity. They also demonstrated that ectopic MCU activation or mtROS during odor exposure could accelerate learning. This is quite profound, as it highlights the importance of mitochondrial function in complex neuronal processes beyond their general roles in the development and maintenance of neurons through energy homeostasis and biosynthesis, amongst their other cell-non-specific roles.
Weaknesses:
While the manuscript is generally robust, there are some concerns that should be addressed to improve the strength of the proposed model:
(1) Throughout the manuscript, it is implied that MCU activation caused by odor conditioning changes mitochondrial calcium levels. However, there is no direct experimental evidence of this. For example, the authors write on p.10 "This shows that H2O2 production occurs downstream of MCU activation and calcium influx into the mitochondria", and on p. 11, the statement that prolonged exposure to odors causes calcium influx. Because this is a key element of the proposed model, experimental evidence would be required to support it.
(2) Some controls missing, e.g. a heat-shock-only control in WT and mcu-1 (non-transgenic) background in Figure 1h is required to ensure the heat-shock stress does not interfere with odor learning.
(3) Lee et al propose that mcu-1 is required at the adult stage to accomplish odor learning because inducing mcu-1 expression at larval stages did not rescue the phenotype of mcu-1 mutants during adulthood. However, the requirement of MCU for odor learning was narrowed down to a 15' window at the end of odor conditioning (Figure 5c). Is it possible that MCU-1 protein levels decline after larval induction so that MCU-1 is no longer present during adulthood when odor conditioning is performed?
(4) There is a limited learning effect observable after 30 minutes, and a very pronounced effect in all animals after 90 minutes. The authors very carefully dissect the learning mechanism at 60 minutes of exposure and distinguish processes that are relevant at 60 minutes from those important at 30 minutes. Some explanation or speculation as to why the processes crucial at the 60-minute mark are redundant at 90 minutes of exposure would be important.
(5) Given the presumably ubiquitous function of mcu-1/MCU in mitochondrial calcium homeostasis, it is remarkable that its perturbation impacts only a very specific neuronal process in AWC at a very specific time. The authors should elaborate on this surprising aspect of their discovery in the discussion.
(6) Associated with the above comment, it remains possible that mcu-1 is required in coelomocytes for their ability to absorb NLP-1::Venus (Figure 3B), and the AWC-specific role of mcu-1 for this phenotype should be determined.
Reviewer #3 (Public review):
Summary:
This manuscript reports a role for the mitochondrial calcium uniporter gene (mcu-1) in regulating associative learning behavior in C. elegans. This regulation occurs by mcu-1-dependent secretion of the neuropeptide NLP-1 from the sensory neuron AWC. The authors report a post-developmental role for mcu-1 in AWC to promote learning. The authors further show that odor conditioning leads to increases in NLP-1 secretion from AWC, and that interfering with mcu-1 function reduces NLP-1 secretion. Finally, the authors show that NLP-1 secretion increases when ROS levels in AWC are genetically or pharmacologically elevated. The authors propose that mitochondrial calcium entry through MCU-1 in response to odor conditioning leads to the generation of ROS and the subsequent increase in neuropeptide secretion to promote conditioned behavior.
Strengths:
(1) The authors show convincingly that genetically or pharmacologically manipulating MCU function impacts chemotaxis in a conditioned learning paradigm.
(2) The demonstration that the secretion of a specific neuropeptide can be up-regulated by MCU, ROS and odor conditioning is an important and interesting advance that addresses mechanisms by which neuropeptide secretion can be regulated in vivo.
Weaknesses:
(1) The authors conclusion that mcu-1 functions in the AWC-on neuron is not adequately supported by their rescue experiments. The promoter they use for rescue drives expression in a number of additional neurons including AWC-on, that themselves are implicated in adaptation, leaving open the possibility that mcu-1 may function non-autonomously instead of autonomously in AWC to regulate this behavior.
(2) The authors conclude MCU promotes neuropeptide release from AWC by controlling calcium entry into mitochondria, but they did not directly examine the effects of altered MCU function on calcium dynamics either in mitochondria or in the soma, even though they conducted calcium imaging experiments in AWC of wild type animals. Examination of calcium entry in mitochondria would be a direct test of their model.
(3) The authors' conclusion that mitochondrial-derived ROS produced by MCU activation drives neuropeptide release does not appear to be experimentally supported. A major weakness of this paper is that experiments addressing whether mcu-1 activity indeed produces ROS are not included, leaving unanswered the question of whether MCU is the endogenous source of ROS that drives neuropeptide secretion.