Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorClara AkpanMichael Okpara University of Agriculture, Umudike, Nigeria
- Senior EditorEduardo FrancoMcGill University, Montreal, Canada
Reviewer #1 (Public review):
Summary:
The authors aimed to quantify feral pig interactions in eastern Australia to inform disease transmission networks. They used GPS tracking data from 146 feral pigs across multiple locations to construct proximity-based social networks and analyze contact rates within and between pig social units.
Strengths:
(1) Addresses a critical knowledge gap in feral pig social dynamics in Australia.
(2) Uses robust methodology combining GPS tracking and network analysis.
(3) Provides valuable insights into sex-based and seasonal variations in contact rates.
(4) Effectively contextualizes findings for disease transmission modeling and management.
(5) Includes comprehensive ethical approval for animal research.
(6) Utilizes data from multiple locations across eastern Australia, enhancing generalizability.
Weaknesses:
(1) Limited discussion of potential biases from varying sample sizes across populations
(2) Some key figures are in supplementary materials rather than the main text.
(3) Economic impact figures are from the US rather than Australia-specific data.
(4) Rationale for spatial and temporal thresholds for defining contacts could be clearer.
(5) Limited discussion of ethical considerations beyond basic animal ethics approval.
The authors largely achieved their aims, with the results supporting their conclusions about the importance of sex and seasonality in feral pig contact networks. This work is likely to have a significant impact on feral pig management and disease control strategies in Australia, providing crucial data for refining disease transmission models.
Reviewer #2 (Public review):
Summary:
The paper attempts to elucidate how feral (wild) pigs cause distortion of the environment in over 54 countries of the world, particularly Australia.
The paper displays proof that over $120 billion worth of facilities were destroyed annually in the United States of America.
The authors have tried to infer that the findings of their work were important and possess a convincing strength of evidence.
Strengths:
(1) Clearly stating feral (wild) pigs as a problem in the environment.
(2) Stating how 54 countries were affected by the feral pigs.
(3) Mentioning how $120 billion was lost in the US, annually, as a result of the activities of the feral pigs.
(4) Amplifying the fact that 14 species of animals were being driven into extinction by the feral pigs.
(5) Feral pigs possessing zoonotic abilities.
(6) Feral pigs acting as reservoirs for endemic diseases like brucellosis and leptospirosis.
(7) Understanding disease patterns by the social dynamics of feral pig interactions.
(8) The use of 146 GPS-monitored feral pigs to establish their social interaction among themselves.
Weaknesses:
(1) Unclear explanation of the association of either the female or male feral pigs with each other, seasonally.
(2) The "abstract paragraph" was not justified.
(3) Typographical errors in the abstract.
Reviewer #3 (Public review):
Summary:
The authors sought to understand social interactions both within and between groups of feral pigs, with the intent of applying their findings to models of disease transmission. The authors analyzed GPS tracking data from across various populations to determine patterns of contact that could support the transmission of a range of zoonotic and livestock diseases. The analysis then focused on the effects of sex, group dynamics, and seasonal changes on contact rates that could be used to base targeted disease control strategies that would prioritize the removal of adult males for reducing intergroup disease transmission.
Strengths:
It utilized GPS tracking data from 146 feral pigs over several years, effectively capturing seasonal and spatial variation in the social behaviors of interest. Using proximity-based social network analysis, this work provides a highly resolved snapshot of contact rates and interactions both within and between groups, substantially improving research in wildlife disease transmission. Results were highly useful and provided practical guidance for disease management, showing that control targeted at adult males could reduce intergroup disease transmission, hence providing an approach for the control of zoonotic and livestock diseases.
Weaknesses:
Despite their reliability, populations can be skewed by small sample sizes and limited generalizability due to specific environmental and demographic characteristics. Further validation is needed to account for additional environmental factors influencing social dynamics and contact rates