Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAlejandro San MartínCentro de Estudios Científicos and Universidad San Sebastián, Valdivia, Chile
- Senior EditorLynne-Marie PostovitQueens University, Kingston, Canada
Reviewer #1 (Public review):
Summary:
In the manuscript entitled 'The Role of ATP Synthase Subunit e (ATP5I) in 1 Mediating the Metabolic and Antiproliferative 2 Effects of Biguanides', Lefrancois G et al. identifies ATP5I, a subunit of F1Fo-ATP synthase, as a key target of medicinal biguanides. ATP5I stabilizes F1Fo-ATP synthase dimers, essential for cristae morphology, but its role in cancer metabolism is understudied. The research shows ATP5I interacts with a biguanide analogue, and its knockout in pancreatic cancer cells mimics biguanide treatment effects, including altered mitochondria, reduced OXPHOS, and increased glycolysis. ATP5I knockout cells resist biguanide-induced antiproliferative effects, but reintroducing ATP5I restores the effects of metformin and phenformin. These findings highlight ATP5I as a promising mitochondrial target for cancer therapies. The manuscript is well written.
Strengths:
Demonstrated the experiments in systematic and well-accepted methods.
Weaknesses:
The significance of the target molecule and mechanisms may help in understanding the molecular mechanisms of metformin.
Reviewer #2 (Public review):
Summary:
The mechanism(s) by which the therapeutic drug metformin lowers blood glucose in type 2 diabetes and inhibits cell proliferation at higher concentrations remain contentious. Inhibition of complex 1 of the mitochondrial respiratory chain with consequent changes in cellular metabolites which favour allosteric activation of phosphofructokinase-1, allosteric inhibition of fructose bisphosphatase-1 and cAMP signalling and activation of AMPK which phosphorylates transcription factors are candidate mechanisms. The current manuscript proposes the e-subunit of ATP-synthase as a putative binding protein of biguanides and demonstrates that it regulates the expressivity of the Complex 1 protein NDUFB8.
Strengths:
(1) The metformin conjugate and metformin show comparable efficacy on inhibition of cell proliferation in the millimolar range.
(2) Demonstration of compromised expression of the Complex I protein NDUFB8 by the ATP5I knockout and its reversal by ATP5I expression is an important strength of the study. This shows that the decreased "sensitivity" to metformin in the ATP5I knock-out cells could be due to various proteins.
(3) Demonstration of converse effects of ATP5I KO and re-expression ATP5I on the NAD/NADH ratio.
Weaknesses:
(1) The interpretation of the cellular co-localization of the biotin-biguanide conjugate with TOMM20 (Figure 1-D) as mitochondrial "accumulation" of the conjugate is overstated because it cannot exclude binding of the conjugate to the mitochondrial membrane. It would have been more convincing if additional incubations with the biotin-biguanide conjugate in combination with metformin had shown that metformin is competitive with the biotin-conjugate.
(2) The manuscript reports the identification of 69 proteins by mass spectrometry of the pull-down assay of which 31 proteins were eluted by metformin. However, no Mass Spectrometry data is presented of the peptides identified. The methodology does not state the minimum number of peptides (1, 2?) that were used for the identification of the 31/69 proteins.
(3) The validation of ATP5I was based on the use of recombinant protein (which was 90% pure) for the SPR and the use of a single antibody to ATP5I. The validity of the immunoblotting rests on the assumption that there is no "non-specific" immunoactivity in the relevant mol wt range. Information on the validation of the antibody would be helpful.
(4) Knock-out of ATP5I markedly compromised the NAD/NADH ratio (Fig.3A) and cell proliferation (Figure 3D). These effects may be associated with decreased mitochondrial membrane potential which could explain the low efficacy of metformin (and most of the data in Figures 3-5). This possibility should be discussed. Effects of [metformin] on the NAD/NADH ratio in control cells and ATP5I-KO would have been helpful because the metformin data on cell growth is normalized as fold change relative to control, whereas the NAD/NADH ratio would represent a direct absolute measurement enabling comparison of the absolute effect in control cells with ATP5I KO.
(5) Figure-6 CRISPR/Cas9 KO at 16mM metformin in comparison with 70nM rotenone and 2 micromolar oligomycin (in serum-containing medium). The rationale for the use of such a high concentration of metformin has not been explained. In liver cells metformin concentrations above 1mM cause severe ATP depletion, whereas therapeutic (micromolar) concentrations have minimal effects on cellular ATP status. The 16mM concentration is ~2 orders of magnitude higher than therapeutic concentrations and likely linked to compromised energy status. The stronger inhibition of cell proliferation by 16mM metformin compared with rotenone or oligomycin raises the issue of whether the changes in gene expression may be linked to the greater inhibition of mitochondrial metabolism. Validation of the cellular ATP status and NAD/NADH with metformin as compared with the two inhibitors could help the interpretation of this data.
Reviewer #3 (Public review):
Most of the data are based on measurements of the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) measured by the Seahorse analyser in control and ATP5l KO cells. However, these measurements are conducted by a single injection of a biguanide, followed over time and presented as fold change. By doing so, the individual information on the effect of metformin and derivate on control and KO cells are lost. In addition, the usual measurement of OCR is coupled with certain inhibitors and uncouplers, such as oligomycin, FCCP, and Antimycin A/rotenone, to understand the contribution of individual complexes to respiration. Since biguanides and ATP5l KO affect protein levels of components of complex I and IV, it would be informative to measure their individual contributions/effects in the Seahorse. To further strengthen the data, it would be helpful to obtain measurements of actual ATP levels in these cells, as this would explain the activation of AMPK.
The authors report on alterations in mitochondrial morphology upon ATP5l KO, which is measured by subjective quantifications of filamentous versus puncta structures. Fiji offers great tools to quantify the mitochondrial network unbiasedly and with more accuracy using deconvolution and skeletonization of the mitochondria, providing the opportunity to measure length, shape, and number quantitatively. This will help to understand better, whether mitochondria are really fragmented upon ATP5l KO and rescued by its re-introduction.
Finally, the authors report in the last part of the paper a genetic CRISPR/Cas9 KO screen in NALM-6 cells cultured with high amounts of metformin to identify potential new mediators of metformin action. It is difficult to connect that to the rest of the paper because a) different concentrations of metformin are used and b) the metabolic effects on energy consumption are not defined. They argue about the molecular function of the obtained hits based on literature and on a comparison of the pattern of genetic alterations based on treatments with known inhibitors such as oligomycin and rotenone. However, a direct connection is not provided, thus the interpretation at the end of the results that "the OMA1-DEL1-HRI pathway mediates the antiproliferative activity of both biguanides and the F1ATPase inhibitor oligomycin" while increasing glycolysis, needs to be toned down. This is an interesting observation, but no causality is provided. In general, this part stands alone and needs to be better connected to the rest of the paper.