Author response:
The following is the authors’ response to the original reviews
Reviewer #1 (Public review):
Summary:
This study investigates what happens to the stimulus-driven responses of V4 neurons when an item is held in working memory. Monkeys are trained to perform memory-guided saccades: they must remember the location of a visual cue and then, after a delay, make an eye movement to the remembered location. In addition, a background stimulus (a grating) is presented that varies in contrast and orientation across trials. This stimulus serves to probe the V4 responses, is present throughout the trial, and is task-irrelevant. Using this design, the authors report memory-driven changes in the LFP power spectrum, changes in synchronization between the V4 spikes and the ongoing LFP, and no significant changes in firing rate.
Strengths:
(1) The logic of the experiment is nicely laid out.
(2) The presentation is clear and concise.
(3) The analyses are thorough, careful, and yield unambiguous results.
(4) Together, the recording and inactivation data demonstrate quite convincingly that the signal stored in FEF is communicated to V4 and that, under the current experimental conditions, the impact from FEF manifests as variations in the timing of the stimulus-evoked V4 spikes and not in the intensity of the evoked activity (i.e., firing rate).
Weaknesses:
I think there are two limitations of the study that are important for evaluating the potential functional implications of the data. If these were acknowledged and discussed, it would be easier to situate these results in the broader context of the topic, and their importance would be conveyed more fairly and transparently.
(1) While it may be true that no firing rate modulations were observed in this case, this may have been because the probe stimuli in the task were behaviorally irrelevant; if anything, they might have served as distracters to the monkey's actual task (the MGS). From this perspective, the lack of rate modulation could simply mean that the monkeys were successful in attending the relevant cue and shielding their performance from the potentially distracting effect of the background gratings. Had the visual probes been in some way behaviorally relevant and/or spatially localized (instead of full field), the data might have looked very different.
Any task design involves tradeoffs; if the visual stimulus was behaviorally relevant, then any observed neurophysiological changes would be more confounded by possible attentional effects. We cannot exclude the possibility that a different task or different stimuli would produce different results; we ourselves have reported firing rate enhancements for other types of visual probes during an MGS task (Merrikhi et al. 2017). We have added an acknowledgement of these limitations in the discussion section (lines 323-330 in untracked version). At minimum, our results show a dissociation between the top-down modulation of phase coding, which is enhanced during WM even for these task-irrelevant stimuli, and rate coding. Establishing whether and how this phase coding is related to perception and behavior will be an important direction for future work.
With this in mind, it would be prudent to dial down the tone of the conclusions, which stretch well beyond the current experimental conditions (see recommendations).
We have edited the title (removing the word ‘primarily’) and key sentences throughout to tone down the conclusions, generally to state that the importance of a phase code in WM modulations is *possible* given the observed results, rather than certain (see abstract lines 26-27, introduction lines 59-62, conclusion lines 310-311).
(2) Another point worth discussing is that although the FEF delay-period activity corresponds to a remembered location, it can also be interpreted as an attended location, or as a motor plan for the upcoming eye movement. These are overlapping constructs that are difficult to disentangle, but it would be important to mention them given prior studies of attentional or saccade-related modulation in V4. The firing rate modulations reported in some of those cases provide a stark contrast with the findings here, and I again suspect that the differences may be due at least in part to the differing experimental conditions, rather than a drastically different encoding mode or functional linkage between FEF and V4.
We have added a paragraph to the discussion section addressing links to attention and motor planning (lines 315-333), and specifically acknowledging the inherent difficulties of fully dissociating these effects when interpreting our results (lines 323-330).
Reviewer #2 (Public review):
Summary:
It is generally believed that higher-order areas in the prefrontal cortex guide selection during working memory and attention through signals that selectively recruit neuronal populations in sensory areas that encode the relevant feature. In this work, Parto-Dezfouli and colleagues tested how these prefrontal signals influence activity in visual area V4 using a spatial working memory task. They recorded neuronal activity from visual area V4 and found that information about visual features at the behaviorally relevant part of space during the memory period is carried in a spatially selective manner in the timing of spikes relative to a beta oscillation (phase coding) rather than in the average firing rate (rate code). The authors further tested whether there is a causal link between prefrontal input and the phase encoding of visual information during the memory period. They found that indeed inactivation of the frontal eye fields, a prefrontal area known to send spatial signals to V4, decreased beta oscillatory activity in V4 and information about the visual features. The authors went one step further to develop a neural model that replicated the experimental findings and suggested that changes in the average firing rate of individual neurons might be a result of small changes in the exact beta oscillation frequency within V4. These data provide important new insights into the possible mechanisms through which top-down signals can influence activity in hierarchically lower sensory areas and can therefore have a significant impact on the Systems, Cognitive, and Computational Neuroscience fields.
Strengths:
This is a well-written paper with a well-thought-out experimental design. The authors used a smart variation of the memory-guided saccade task to assess how information about the visual features of stimuli is encoded during the memory period. By using a grating of various contrasts and orientations as the background the authors ensured that bottom-up visual input would drive responses in visual area V4 in the delay period, something that is not commonly done in experimental settings in the same task. Moreover, one of the major strengths of the study is the use of different approaches including analysis of electrophysiological data using advanced computational methods of analysis, manipulation of activity through inactivation of the prefrontal cortex to establish causality of top-down signals on local activity signatures (beta oscillations, spike locking and information carried) as well as computational neuronal modeling. This has helped extend an observation into a possible mechanism well supported by the results.
Weaknesses:
Although the authors provide support for their conclusions from different approaches, I found that the selection of some of the analyses and statistical assessments made it harder for the reader to follow the comparison between a rate code and a phase code. Specifically, the authors wish to assess whether stimulus information is carried selectively for the relevant position through a firing rate or a phase code. Results for the rate code are shown in Figures 1B-G and for the phase code are shown in Figure 2. Whereas an F-statistic is shown over time in Figure 1F (and Figure S1) no such analysis is shown for LFP power. Similarly, following FEF inactivation there is no data on how that influences V4 firing rates and information carried by firing rates in the two conditions (for positions inside and outside the V4 RF). In the same vein, no data are shown on how the inactivation affects beta phase coding in the OUT condition.
Per the reviewer’s suggestion, we have added several new supplementary figures. We now show the F-statistic for discriminability over time for the LFP timecourse (Fig. S2), and as a function of power in various frequencies (Fig. S4). We have added before/after inactivation comparisons of the LFP and spiking activity, and their respective F-statistics for discrimination between contrasts and orientations in Fig. S9. Lastly, we added a supplementary figure evaluating the impact of FEF inactivation on beta phase coding in the OUT condition, showing no significant change (Fig. S11).
Moreover, some of the statistical assessments could be carried out differently including all conditions to provide more insight into mechanisms. For example, a two-way ANOVA followed by post hoc tests could be employed to include comparisons across both spatial (IN, OUT) and visual feature conditions (see results in Figures 2D, S4, etc.). Figure 2D suggests that the absence of selectivity in the OUT condition (no significant difference between high and low contrast stimuli) is mainly due to an increase in slope in the OUT condition for the low contrast stimulus compared to that for the same stimulus in the IN condition. If this turns out to be true it would provide important information that the authors should address.
We have updated the STA slope measurement, excluding the low contrast condition which lacks a clear peak in the STA. Additionally, we equalized the bin widths and aligned the x-axes for better visual comparability. Then, we performed a two-way ANOVA, analyzing the effects of spatial features (IN vs. OUT) and visual conditions (contrast and orientation). The results showed a significant effect of the visual feature on both orientation (F = 3.96, p=0.046) and contrast (F = 14.26, p<10-3). However, neither the spatial feature nor the spatial-visual interaction exhibited significant effects for orientation (F = 0.52, p=0.473, F=1.56, p=0.212) or contrast (F = 2.19, p=0.139, F=1.15, p=0.283).
There are also a few conceptual gaps that leave the reader wondering whether the results and conclusion are general enough. Specifically,
(1) The authors used microstimulation in the FEF to determine RFs. It is thus possible that the FEF sites that were inactivated were largely more motor-related. Given that beta oscillations and motor preparatory activity have been found to be correlated and motor sites show increased beta oscillatory activity in the delay period, it is possible that the effect of FEF inactivation on V4 beta oscillations is due to inactivation of the main source of beta activity. Had the authors inactivated sites with a preponderance of visual neurons in the FEF would the results be different?
We do not believe this to be likely based on what is known anatomically and functionally about this circuitry. Anatomically, the projections from FEF to V4 arise primarily from the supragranular layers, not layers which contain the highest proportion of motor activity (Barone et al. 2000, Pouget et al. 2009, Markov et al. 2013). Functionally, based on electrical identification of V4-projecting FEF neurons, we know that FEF to V4 projections are predominantly characterized by delay rather than motor activity (Merrikhi et al. 2017). We have now tried to emphasize these points when we introduce the inactivation experiments (lines 185-186).
Experimentally, the spread of the pharmacological effect with our infusion system is quite large relative to any clustering of visual vs. motor neurons within the FEF, with behavioral consequences of inactivation spreading to cover a substantial portion of the visual hemifield (e.g., Noudoost et al. 2014, Clark et al. 2014), and so our manipulation lacks the spatial resolution to selectively target motor vs. other FEF neurons.
(2) Somewhat related to this point and given the prominence of low-frequency activity in deeper layers of the visual cortex according to some previous studies, it is not clear where the authors' V4 recordings were located. The authors report that they do have data from linear arrays, so it should be possible to address this.
Unfortunately, our chamber placement for V4 has produced linear array penetration angles which do not reliably allow identification of cortical layers. We are aware of previous results showing layer-specific effects of attention in V4 (e.g., Pettine et al. 2019, Buffalo et al. 2011), and it would indeed be interesting to determine whether our observed WM-driven changes follow similar patterns. We may be able to analyze a subset of the data with current source density analysis to look for layer-specific effects in the future, but are not able to provide any information at this time.
(3) The authors suggest that a change in the exact frequency of oscillation underlies the increase in firing rate for different stimulus features. However, the shift in frequency is prominent for contrast but not for orientation, something that raises questions about the general applicability of this observation for different visual features.
While the shift in peak frequency across contrasts is more prominent than that across orientations (Fig. S3A-B), the relationship between orientation and peak frequency is also significant (one-way ANOVA for peak frequency across contrasts, FContrast=10.72, p<10-4; or across orientations, FOrientation=3, p=0.030; stats have been added to Fig. S3 caption). This finding also aligns with previous studies, which reported slight peak frequency shifts (~1–2 Hz) in the context of attention (Fries, 2015). To address the question of whether the frequency-firing rate correlation generalizes to orientation-driven changes, we now examine the relationship between peak frequency and firing rate separately for each contrast level (Fig. S14). The average normalized response as a function of peak frequency, pooled across subsamples of trials from each of 145 V4 neurons (100 subsamples/neuron), IN vs. OUT conditions, shows a significant correlation during the delay period for each contrast (contrast low (FCondition=0.03, p=0.867; FFrequency=141.86, p<10-18; FInteraction=10.70, p=0.002, ANCOVA), contrast middle (FCondition=7.18, p=0.009; FFrequency=96.76, p<10-14; FInteraction=0.13, p=0.716, ANCOVA), contrast high (FCondition=12.51, p=0.001; FFrequency=333.74, p<10-29; FInteraction=7.91, p=0.006, ANCOVA).
(4) One of the major points of the study is the primacy of the phase code over the rate code during the delay period. Specifically, here it is shown that information about the visual features of a stimulus carried by the rate code is similar for relevant and irrelevant locations during the delay period. This contrasts with what several studies have shown for attention in which case information carried in firing rates about stimuli in the attended location is enhanced relative to that for stimuli in the unattended location. If we are to understand how top-down signals work in cognitive functions it is inevitable to compare working memory with attention. The possible source of this difference is not clear and is not discussed. The reader is left wondering whether perhaps a different measure or analysis (e.g. a percent explained variance analysis) might reveal differences during the delay period for different visual features across the two spatial conditions.
We have added discussion regarding the relationship of these results to previous findings during attention in the discussion section (lines 315-333).
The use of the memory-guided saccade task has certain disadvantages in the context of this study. Although delay activity is interpreted as memory activity by the authors, it is in principle possible that it reflects preparation for the upcoming saccade, spatial attention (particularly since there is a stimulus in the RF), etc. This could potentially change the conclusion and perspective.
We have added a new discussion paragraph addressing the relationship to attention and motor planning (lines 315-333). We have also moderated the language used to describe our conclusions throughout the manuscript in light of this ambiguity.
For the position outside the V4 RF, there is a decrease in both beta oscillations and the clustering of spikes at a specific phase. It is therefore possible that the decrease in information about the stimuli features is a byproduct of the decrease in beta power and phase locking. Decreased oscillatory activity and phase locking can result in less reliable estimates of phase, which could decrease the mutual information estimates.
Looking at the SNR as a ratio of power in the beta band to all other bands, there is no significant drop in SNR between conditions (SNRIN = 4.074+-984, SNROUT = 4.333+-0.834 OUT, p=0.341, Wilcoxon signed-rank). Therefore, we do not think that the change in phase coding is merely a result of less reliable phase estimates.
The authors propose that coherent oscillations could be the mechanism through which the prefrontal cortex influences beta activity in V4. I assume they mean coherent oscillations between the prefrontal cortex and V4. Given that they do have simultaneous recordings from the two areas they could test this hypothesis on their own data, however, they do not provide any results on that.
This paper only includes inactivation data. We are working on analyzing the simultaneous recording data for a future publication.
The authors make a strong point about the relevance of changes in the oscillation frequency and how this may result in an increase in firing rate although it could also be the reverse - an increase in firing rate leading to an increase in the frequency peak. It is not clear at all how these changes in frequency could come about. A more nuanced discussion based on both experimental and modeling data is necessary to appreciate the source and role (if any) of this observation.
As the reviewer notes, it is difficult to determine whether the frequency changes drive the rate changes, vice versa, or whether both are generated in parallel by a common source. We have adjusted our language to reflect this (lines 291-293). Future modeling work may be able to shed more light on the causal relationships between various neural signatures.
Reviewer #3 (Public review):
Summary:
In this report, the authors test the necessity of prefrontal cortex (specifically, FEF) activity in driving changes in oscillatory power, spike rate, and spike timing of extrastriate visual cortex neurons during a visual-spatial working memory (WM) task. The authors recorded LFP and spikes in V4 while macaques remembered a single spatial location over a delay period during which task-irrelevant background gratings were displayed on the screen with varying orientation and contrast. V4 oscillations (in the beta range) scaled with WM maintenance, and the information encoded by spike timing relative to beta band LFP about the task-irrelevant background orientation depended on remembered location. They also compared recorded signals in V4 with and without muscimol inactivation of FEF, demonstrating the importance of FEF input for WM-induced changes in oscillatory amplitude, phase coding, and information encoded about background orientations. Finally, they built a network model that can account for some of these results. Together, these results show that FEF provides meaningful input to the visual cortex that is used to alter neural activity and that these signals can impact information coding of task-irrelevant information during a WM delay.
Strengths:
(1) Elegant and robust experiment that allows for clear tests for the necessity of FEF activity in WM-induced changes in V4 activity.
(2) Comprehensive and broad analyses of interactions between LFP and spike timing provide compelling evidence for FEF-modulated phase coding of task-irrelevant stimuli at remembered location.
(3) Convincing modeling efforts.
Weaknesses:
(1) 0% contrast background data (standard memory-guided saccade task) are not reported in the manuscript. While these data cannot be used to consider information content of spike rate/time about task-irrelevant background stimuli, this condition is still informative as a 'baseline' (and a more typical example of a WM task).
We have added a new supplementary figure to show the effect of WM on V4 LFP power and SPL in 0% contrast trials (Fig. S6). These results (increases in beta LFP power and SPL when remembering the V4 RF location) match our previous report for the effect of spatial WM on LFP power and SPL within extrastriate area MT (Bahmani et al. 2018).
(2) Throughout the manuscript, the primary measurements of neural coding pertain to task-irrelevant stimuli (the orientation/contrast of the background, which is unrelated to the animal's task to remember a spatial location). The remembered location impacts the coding of these stimulus variables, but it's unclear how this relates to WM representations themselves.
Indeed, here we have focused on how maintaining spatial WM impacts visual processing of incoming sensory information, rather than on how the spatial WM signal itself is represented and maintained. Behaviorally, this impact on visual signals could be related to the effects of the content of WM on perception and reaction times (e.g., Soto et al. 2008, Awh et al. 1998, Teng et al. 2019), but no such link to behavior is shown in our data.
Recommendations for the authors:
Reviewer #1 (Recommendations for the authors):
As mentioned above, the two points I raised in the public review merit a bit of development in the Discussion. In addition, the authors should revise some of their conclusions.
For instance (L217):
"The finding that WM mainly modulates phase coded information within extrastriate areas fundamentally shifts our understanding of how the top-down influence of prefrontal cortex shapes the neural representation, suggesting that inducing oscillations is the main way WM recruits sensory areas."
In my opinion, this one is over-the-top on various counts.
Here is another exaggerated instance (L298):
"...leading us to conclude that representations based on the average firing rate of neurons are not the primary way that top-down signals enhance sensory processing."
Again, as noted above, the problem is that one could make the case that the top-down signals are, in fact, highly effective, since they are completely quashing any distracter-related modulation in firing rate across RFs. There is only so much that one can conclude from responses to stimuli that are task-irrelevant, uniform across space, and constant over the course of a trial.
I think even the title goes too far. What the work shows, by all accounts, is that the sustained activity in FEF has a definitive impact on V4 *even* with respect to a sustained, irrelevant background stimulus. The result is very robust in this sense. However, this is quite different from saying that the *primary* means of functional control for FEF is via phase coding. Establishing that would require ruling out other forms of control (i.e., rate coding) in all or a wide range of experimental conditions. That is far from the restricted set of conditions tested here and is also at variance with many other experiments demonstrating effects of attention or even FEF microstimulation on V4 firing activity.
To reiterate, in my opinion, the work is carefully executed and the data are interesting and largely unambiguous. I simply take issue with what can be reliably concluded, and how the results fit with the rest of the literature. Revisions along these lines would improve the readability of the paper considerably.
We have edited the title (removing the word ‘primarily’) and key sentences throughout to tone down the conclusions, generally to state that the importance of a phase code in WM modulations is *possible* given the observed results, rather than certain (see abstract lines 26-27, introduction lines 59-62, conclusion lines 310-311).
Reviewer #3 (Recommendations for the authors):
(1) My primary comment that came up multiple times as I read the manuscript (and which is summarized above) is that I wasn't ever sure why the authors are focused on analyzing neural coding of task-irrelevant sensory information during a WM task as a function of WM contents (remembered location). Most studies of neural codes supporting WM often focus on coding the remembered information - not other information. Conceptually, it seems that the brain would want to suppress - or at least not enhance - representations of task-irrelevant information when performing a demanding task, especially when there is no search requirement, and when there is no feature correspondence between the remembered and viewed stimuli. (i.e., the interaction between WM and visual input is more obvious for visual search for a remembered target). Why, in theory, would a visual region need to improve its coding of non-remembered information as a function of WM? This isn't meant to detract from the results, which are indeed very interesting and I think quite informative. The authors are correct that this is certainly relevant for sensory recruitment models of WM - there's clear evidence for a role of feedback from PFC to extrastriate cortex - but what role, specifically, each region plays in this task is critical to describe clearly, especially given the task-irrelevance of the input. Put another way: what if the animal was remembering an oriented grating? In that case, MI between spike-based measures and orientation would be directly relevant to questions of neural WM representations, as the remembered feature is itself being modeled. But here, the focus seems to be on incidental coding.
Indeed, here we have focused on how maintaining spatial WM impacts visual processing of incoming sensory information, rather than on how the spatial WM signal itself is represented and maintained. Behaviorally, this impact on visual signals could be related to the effects of the content of WM on perception and reaction times (e.g., Soto et al. 2008, Awh et al. 1998, Teng et al. 2019), but no such link to behavior is shown in our data.
Whether similar phase coding is also used to represent the content of object WM (for example, if the animal was remembering an oriented grating), or whether phase coding is only observed for WM’s modulation of the representation of incoming sensory signals, is an important question to be addressed in future work.
(2) Related to the above, the phrasing of the second sentence of the Discussion (lines 291-292) is ambiguous - do the authors mean that the FEF sends signals that carry WM content to V4, or that FEF sends projections to V4, and V4 has the WM content? As presently phrased, either of these are reasonable interpretations, yet they're directly opposing one another (the next sentence clarifies, but I imagine the authors want to minimize any confusion).
We have edited this sentence to read, “Within prefrontal areas, FEF sends direct projections to extrastriate visual areas, and activity in these projections reflects the content of WM.”
(3) I'm curious about how the authors consider the spatial WM task here different from a cued spatial attention task. Indeed, both require sustained use of a location for further task performance. The section of the Discussion addressing similar results with attention (lines 307-311) presently just summarizes the similarities of results but doesn't offer a theoretical perspective for how/why these different types of tasks would be expected to show similar neural mechanisms.
We have added discussion regarding the relationship of these results to previous findings during attention in the discussion section (lines 315-333).
(4) As far as I can tell, there is no consideration of behavioral performance on the memory-guided saccade task (RT, precision) across the different stimulus background conditions. This should be reported for completeness, and to determine whether there is an impact of the (likely) task-irrelevant background on task performance. This analysis should also be reported for Figure 3's results characterizing how FEF inactivation disrupts behavior (if background conditions were varied, see point 7 below).
We have added the effect of inactivation on behavioral RT and % correct across the different stimulus background conditions (Fig. S8). Background contrast and orientation did not impact either RT or % correct.
(5) Results from Figure 2 (especially Figures 2A-B) concerning phase-locked spiking in V4 should be shown for 0%-contrast trials as well, as these trials better align with 'typical' WM tasks.
We have added a new supplementary figure to show the effect of WM on V4 LFP power and SPL in 0% contrast trials (Fig. S6). These results (increases in beta LFP power and SPL) match our previous report for the effect of spatial WM on LFP power and SPL within extrastriate area MT (Bahmani et al. 2018).
(6) The magnitude of SPL difference in aggregate (Figure 2B) is much, much smaller than that of the example site shown (Figure 2A), such that Figure 2A's neuron doesn't appear to be visible on Figure 2B's scatterplot. Perhaps a more representative sample could be shown? Or, the full range of x/y axes in Figure 2B could be plotted to illustrate the full distribution.
We have updated Fig. 2A with a more representative sample neuron.
(7) I'm a bit confused about the FEF inactivation experiments. In the Methods (lines 512-513), the authors mention there was no background stimulus presented during the inactivation experiment, and instead, a typical 8-location MGS task was employed. However, in the results on pg 8 (Lines 201-214), and Figure 3G, the authors quantify a phase code MI. The previous phase code MI analysis was looking at MI between each spike's phase and the background stimulus - but if there's no background, what's used to compute phase code MI? Perhaps what they meant to write was that, in addition to the primary task with a manipulation of background properties, an 8-location MGS task was additionally employed.
The reviewer is correct that both tasks were used after inactivation (the 8-location task to assess the spread of the behavioral effect of inactivation, and the MGS-background task for measuring MI). We have edited the methods text to clarify.
(8) How is % Correct defined for the MGS task? (what is the error threshold? Especially for the results described in lines 192-193).
The % correct is defined as correct completed trials divided by the total number of trials; the target window was a circle with radius of 2 or 4 dva (depending on cue eccentricity). These details have been added to the Methods.
(9) The paragraph from lines 183-200 describes a number of behavioral results concerning "scatter" and "RT" - the RT shown seems extremely high, and perhaps is normalized. Details of this normalization should be included in the Methods. The "scatter" is listed as dva, but it's not clear how scatter is quantified (std dev of endpoint distribution? Mean absolute error), nor how target eccentricity is incorporated (as scatter is likely higher for greater target eccentricity).
We have renamed ‘scatter’ to ‘saccade error’ in the text to match the figure, and now provide details in the Methods section. Both RT and saccade error are normalized for each session, details are now provided in the Methods. Since error was normalized for each session before performing population statistics, no other adjustment for eccentricity was made.