Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorP Darrell NeuferEast Carolina University, Greenville, United States of America
- Senior EditorJonathan CooperFred Hutchinson Cancer Research Center, Seattle, United States of America
Reviewer #1 (Public review):
Summary:
The authors are trying to determine if SFN treatment results in dephosphorylation of TFEB, subsequent activation of autophagy-related genes, exocytosis of lysosomes, and reduction in lysosomal cholesterol levels in models of NPC disease.
Strengths:
(1) Clear evidence that SFN results in translocation of TFEB to the nucleus.
(2) In vivo data demonstrating that SFN can rescue Purkinje neuron number and weight in NPC1-/- animals.
Weaknesses:
(1) Lack of molecular details regarding how SFN results in dephosphorylation of TFEB leading to activation of the aforementioned pathways. Currently, datasets represent correlations.
(2) Based on the manuscript narrative, discussion, and data it is unclear exactly how steady-state cholesterol would change in models of NPC disease following SFN treatment. Yes, there is good evidence that lysosomal flux to (and presumably across) the plasma membrane increases with SFN. However, lysosomal biogenesis genes also seem to be increasing. Given that NPC inhibition, NPC1 knockout, or NPC1 disease mutations are constitutively present and the cell models of NPC disease contain lysosomes (even with SFN) how could a simple increase in lysosomal flux decrease cholesterol levels? It would seem important to quantify the number of lysosomes per cell in each condition to begin to disentangle differences in steady state number of lysosomes, number of new lysosomes, and number of lysosomes being exocytosed.
(3) Lack of evidence supporting the authors' premise that "SFN could be a good therapeutic candidate for neuropathology in NPC disease".
Reviewer #2 (Public review):
Summary:
This study presents a valuable finding that the activation of TFEB by sulforaphane (SFN) could promote lysosomal exocytosis and biogenesis in NPC, suggesting a potential mechanism by SFN for the removal of cholesterol accumulation, which may contribute to the development of new therapeutic approaches for NPC treatment.
Strengths:
The cell-based assays are convincing, utilizing appropriate and validated methodologies to support the conclusion that SFN facilitates the removal of lysosomal cholesterol via TFEB activation.
Weaknesses:
(1) The in vivo experiments demonstrate the therapeutic potential of SFN for NPC. A clear dose-response analysis would further strengthen the proposed therapeutic mechanism of SFN. Additional data supporting the activation of TFEB by SFN for cholesterol clearance in vivo would strengthen the overall impact of the study
(2) In Figure 4, the authors demonstrate increased lysosomal exocytosis and biogenesis by SFN in NPC cells. Including a TFEB-KO/KD in this assay would provide additional validation of whether these effects are TFEB-dependent.
(3) For lysosomal pH measurement, the combination of pHrodo-dex and CF-dex enables ratiometric pH measurement. However, the pKa of pHrodo red-dex (according to Invitrogen) is ~6.8, while lysosomal pH is typically around 4.7. This discrepancy may account for the lack of observed lysosomal pH changes between WT and U18666A-treated cells. Notably, previous studies (PMID: 28742019) have reported an increase in lysosomal pH in U18666A-treated cells.
(4) The authors are also encouraged to perform colocalization studies between CF-dex and a lysosomal marker, as some researchers may be concerned that NPC1 deficiency could reduce or block the trafficking of dextran along endocytosis.
(5) In vivo data supporting the activation of TFEB by SFN for cholesterol clearance would significantly enhance the impact of the study. For example, measuring whole-animal or brain cholesterol levels would provide stronger evidence of SFN's therapeutic potential.
Reviewer #3 (Public review):
Summary:
The authors demonstrate that activation of TFEB facilitates cholesterol clearance in cell models of Niemann-Pick type C (NPC). This is done through a variety of approaches including activation of TFEB by sulforaphane (SFN), a naturally occurring small-molecule TFEB agonist. SFN induces TFEB nuclear translocation and promotes lysosomal exocytosis. In an NPC mouse model, SFN dephosphorylates/activates TFEB in the brain and rescues the loss of Purkinje cells.
Strengths:
NPC is a severe disease and there is little in the way of treatment. The manuscript points towards some treatment options. However, the title, the title "Small-molecule activation of TFEB Alleviates Niemann-Pick Disease..." is far too strong and should be changed.
Weaknesses:
(1) The manuscript is extremely hard to read due to the writing; it needs careful editing for grammar and English.
(2) There are a number of important technical issues that need to be addressed.
(3) The TFEB influence on filipin staining in Figure 1A is somewhat subtle. In the mCherry alone panels there is a transfected cell with no filipin staining and the mCherry-TFEBS211A cells still show some filipin staining.
(4) Figure 1C is impressive for the upregulation of filipin with U18666A treatment. However, SFN is used at 15 microM. This must be hitting multiple pathways. Vauzour et al (PMID: 20166144) use SFN at 10 nM to 1microM. Other manuscripts use it in the low microM range. The authors should repeat at least some key experiments using SFN at a range of concentrations from perhaps 100 nM to 5 microM. The use of 15 microM throughout is an overall concern.