Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJohn EwerUniversidad de Valparaiso, Valparaiso, Chile
- Senior EditorAlbert CardonaUniversity of Cambridge, Cambridge, United Kingdom
Joint Public Review:
Riva et al uncovered the neural substrate underlying the oviposition rhythm in Drosophila melanogaster using a novel device that automates egg collection from individual mated females over the course of multiple days. By systematically knocking down the clock gene period in specific clock neurons the authors show that three cryptochrome (cry) positive dorso-lateral neurons (LNds) present in each hemisphere of the fly brain are critical to generating a female, sex-specific rhythm in oviposition. Interestingly, these neurons are not essential for freerunning locomotor activity. By contrast, the LNvs (lateral ventral neurons), which are essential for freerunning locomotor activity rhythmicity, were not involved in controlling the circadian rhythmicity of oviposition. Thus, this work has identified the first truly sex-specific circadian circuit in Drosophila. Using available Drosophila hemibrain connectome data they identify bidirectional connections between cry-expressing LNd and oviposition-related neurons.
Strengths:
This paper established a new semi-automatic device to register egg-laying activity, in Drosophila and found a specific role for a subset of clock neurons in the control of a female-specific circadian behavior. They also lay the groundwork for understanding how these neurons are connected to the neurons that control egg laying.
Weaknesses:
(1) Controls for the genetic background are incomplete, leaving open the possibility that the observed oviposition timing defects may be due to targeted knockdown of the period (per) gene but from the GAL4, Gal80, and UAS transgenes themselves. To resolve this issue the authors should determine the egg-laying rhythms of the relevant controls (GAL4/+, UAS-RNAi/+, etc); this only needs to be done for those genotypes that produced an arrhythmic egg-laying rhythm.
(2) Reliance on a single genetic tool to generate targeted disruption of clock function leaves the study vulnerable to associated false positive and false negative effects: a) The per RNAi transgene used may only cause partial knockdown of gene function, as suggested by the persistent rhythmicity observed when per RNAi was targeted to all clock neurons. This could indicate that the results in Fig 2C-H underestimate the phenotypes of targeted disruption of clock function. b) Use of a single per RNAi transgene makes it difficult to rule out that off-target effects contributed significantly to the observed phenotypes. We suggest that the authors repeat the critical experiments using a separate UAS-RNAi line (for period or for a different clock gene), or, better yet, use the dominant negative UAS-cycle transgene produced by the Hardin lab (https://doi.org/10.1038/22566).
(3) The egg-laying profiles obtained show clear damping/decaying trends which necessitates careful trend removal from the data to make any sense of the rhythm. Further, the detrending approach used by the authors is not tested for artefacts introduced by the 24h moving average used.
(4) According to the authors the oviposition device cannot sample at a resolution finer than 4 hours, which will compel any experimenter to record egg laying for longer durations to have a suitably long time series which could be useful for circadian analyses.
(5) Despite reducing the interference caused by manually measuring egg-laying, the rhythm does not improve the signal quality such that enough individual rhythmic flies could be included in the analysis methods used. The authors devise a workaround by combining both strongly and weakly rhythmic (LSpower > 0.2 but less than LSpower at p < 0.05) data series into an averaged time series, which is then tested for the presence of a 16-32h "circadian" rhythm. This approach loses valuable information about the phase and period present in the individual mated females, and instead assumes that all flies have a similar period and phase in their "signal" component while the distribution of the "noise" component varies amongst them. This assumption has not yet been tested rigorously and the evidence suggests a lot more variability in the inter-fly period for the egg-laying rhythm.
(6) This variability could also depend on the genotype being tested, as the authors themselves observe between their Canton-S and YW wild-type controls for which their egg-laying profiles show clearly different dynamics. Interestingly, the averaged records for these genotypes are not distinguishable but are reflected in the different proportions of rhythmic flies observed. Unfortunately, the authors also do not provide further data on these averaged profiles, as they did for the wild-type controls in Figure 1, when they discuss their clock circuit manipulations using perRNAi. These profiles could have been included in Supplementary figures, where they would have helped the reader decide for themselves what might have been the reason for the loss of power in the LS periodogram for some of these experimental lines.
(7) By selecting 'the best egg layers' for inclusion in the oviposition analyses an inadvertent bias may be introduced and the results of the assays may not be representative of the whole population.
(8) An approach that measures rhythmicity for groups of individual records rather than separate individual records is vulnerable to outliers in the data, such as the inclusion of a single anomalous individual record. Additionally, the number of individual records that are included in a group may become a somewhat arbitrary determinant for the observed level of rhythmicity. Therefore, the experimental data used to map the clock neurons responsible for oviposition rhythms would be more convincing if presented alongside individual fly statistics, in the same format as used for Figure 1.
(9) The features in the experimental periodogram data in Figures 3B and D are consistent with weakened complex rhythmicity rather than arrhythmicity. The inclusion of more individual records in the groups might have provided the added statistical power to demonstrate this. Graphs similar to those in 1G and 1I, might have better illustrated qualitative and quantitative aspects of the oviposition rhythms upon per knockdown via MB122B and Mai179; Pdf-Gal80.
Wider context:
The study of the neural basis of oviposition rhythms in Drosophila melanogaster can serve as a model for the analogous mechanisms in other animals. In particular, research in this area can have wider implications for the management of insects with societal impact such as pests, disease vectors, and pollinators. One key aspect of D. melanogaster oviposition that is not addressed here is its strong social modulation (see Bailly et al.. Curr Biol 33:2865-2877.e4. doi:10.1016/j.cub.2023.05.074). It is plausible that most natural oviposition events do not involve isolated individuals, but rather groups of flies. As oviposition is encouraged by aggregation pheromones (e.g., Dumenil et al., J Chem Ecol 2016 https://link.springer.com/article/10.1007/s10886-016-0681-3) its propensity changes upon the pre-conditioning of the oviposition substrates, which is a complication in assays of oviposition rhythms that periodically move the flies to fresh substrate.