Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorDetlef WeigelMax Planck Institute for Biology Tübingen, Tübingen, Germany
- Senior EditorAleksandra WalczakÉcole Normale Supérieure - PSL, Paris, France
Reviewer #1 (Public review):
Summary:
This work considers the biases introduced into pathogen surveillance due to congregation effects, and also models homophily and variants/clades. The results are primarily quantitative assessments of this bias but some qualitative insights are gained e.g. that initial variant transmission tends to be biased upwards due to this effect, which is closely related to classical founder effects.
Strengths:
The model considered involves a simplification of the process of congregation using multinomial sampling that allows for a simpler and more easily interpretable analysis.
Weaknesses:
This simplification removes some realism, for example, detailed temporal transmission dynamics of congregations.
Reviewer #2 (Public review):
Summary:
In "Founder effects arising from gathering dynamics systematically bias emerging pathogen surveillance" Bradford and Hang present an extension to the SIR model to account for the role of larger than pairwise interactions in infectious disease dynamics. They explore the impact of accounting for group interactions on the progression of infection through the various sub-populations that make up the population as a whole. Further, they explore the extent to which interaction heterogeneity can bias epidemiological inference from surveillance data in the form of IFR and variant growth rate dynamics. This work advances the theoretical formulation of the SIR model and may allow for more realistic modeling of infectious disease outbreaks in the future.
Strengths:
(1) This work addresses an important limitation of standard SIR models. While this limitation has been addressed previously in the form of network-based models, those are, as the authors argue, difficult to parameterize to real-world scenarios. Further, this work highlights critical biases that may appear in real-world epidemiological surveillance data. Particularly, over-estimation of variant growth rates shortly after emergence has led to a number of "false alarms" about new variants over the past five years (although also to some true alarms).
(2) While the results presented here generally confirm my intuitions on this topic, I think it is really useful for the field to have it presented in such a clear manner with a corresponding mathematical framework. This will be a helpful piece of work to point to to temper concerns about rapid increases in the frequency of rare variants.
(3) The authors provide a succinct derivation of their model that helps the reader understand how they arrived at their formulation starting from the standard SIR model.
(4) The visualizations throughout are generally easy to interpret and communicate the key points of the authors' work.
(5) I thank the authors for providing detailed code to reproduce manuscript figures in the associated GitHub repo.
Weaknesses:
(1) The authors argue that network-based SIR models are difficult to parameterize (line 66), however, the model presented here also has a key parameter, mainly P_n, or the distribution of risk groups in the population. I think it is important to explore the extent to which this parameter can be inferred from real-world data to assess whether this model is, in practice, any easier to parameterize.
(2) The authors explore only up to four different risk groups, accounting for only four-wise interactions. But, clearly, in real-world settings, there can be much larger gatherings that promote transmission. What was the justification for setting such a low limit on the maximum group size? I presume it's due to computational efficiency, which is understandable, but it should be discussed as a limitation.
(3) Another key limitation that isn't addressed by the authors is that there may be population structure beyond just risk heterogeneity. For example, there may be two separate (or, weakly connected) high-risk sub-groups. This will introduce temporal correlation in interactions that are not (and can not easily be) captured in this model. My instinct is that this would dampen the difference between risk groups shown in Figure 2A. While I appreciate the authors's desire to keep their model relatively simple, I think this limitation should be explicitly discussed as it is, in my opinion, relatively significant.