Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJohn SchogginsThe University of Texas Southwestern Medical Center, Dallas, United States of America
- Senior EditorJohn SchogginsThe University of Texas Southwestern Medical Center, Dallas, United States of America
Reviewer #1 (Public review):
Summary:
In cells undergoing Flavivirus infection, cellular translation is impaired but the viruses themselves escape this inhibition and are efficiently translated. In this study, the authors use very elegant and direct approaches to identify the regions in the 5' and 3' UTRs that are important for this phenomenon and then use them to retrieve two cellular proteins that associate with them and mediate translational shutoff evasion (DDX3 and PABP1). A number of experimental approaches are used with a series of well-controlled experiments that fully support the authors' conclusions.
Strengths:
The work identifies the regions in the 5' and 3' UTRs of the viral genome that mediate the escape of JEV from cellular transcriptional shutoff, they evaluate the infectivity of the mutant viruses bearing or not these structures and even explore their pathogenicity in mice. They then identify the cellular proteins that bind to these regions (DDX3 and PABP1) and determine their role in translation blockade escape, in addition to examining and assessing the conservation of the stem-loop identified in JEV in other Flaviviridae.
In almost all of their systematic analyses, translational effects are put in parallel with the replication kinetics of the different mutant viruses. The experimental thread followed in this study is rigorous and direct, and all experiments are truly well-controlled, fully supporting the authors' conclusions
Reviewer #2 (Public review):
Summary:
The authors use a combination of techniques including viral genetics, in vitro reporters, and purified proteins and RNA to interrogate how the Japanese encephalitis virus maintains translation of its RNA to produce viral proteins after the host cell has shut down general translation as a means to block viral replication. They report a role for the RNA helicase DDX3 in promoting virus translation in a cap-independent manner through binding a dumbbell RNA structure in the 3' untranslated region previously reported to drive Japanese encephalitis virus cap-independent translation and a stem-loop at the viral RNA 5' end.
Strengths:
The authors clearly show that the Japanese encephalitis virus does not possess an IRES activity to initiate translation using a range of mono- and bi-cistronic mRNAs. Surprisingly, using a replicon system, the translation of a capped or uncapped viral RNA is reported to have the same translation efficiency when transfected into cells. The authors have applied a broad range of techniques to support their hypotheses.
Weaknesses:
(1) The authors' original experiments in Figure 1 where the virus is recovered following transfection of in vitro transcribed viral RNA with alternative 5' ends such as capped or uncapped ignore that after a single replication cycle of that transfected RNA, the subsequent viral RNA will be capped by the viral capping proteins making the RNA in all conditions the same.
(2) The authors report that deletion of the dumbbell and the large 3' stem-loop RNA reduce replication of a Japanese encephalitis virus replicon. These structures have been reported for other flaviviruses to be important respectively for the accumulation of short flaviviral RNAs that can regulate replication and stability of the viral RNA that lacks a polyA tail. The authors don't show any assessment of RNA stability or degradation state.
(3) The authors propose a model for DDX3 to drive 5'-3' end interaction of the Japanese encephalitis virus viral genome but no direct evidence for this is presented.
(4) The authors' final model in Figure 10 proposes a switch from a cap-dependent translation system in early infection to cap-independent DDX3-driven translation system late in infection. The replicon data that measures translation directly however shows identical traces for capped and uncapped RNAs in all untreated conditions so that which mechanism is used at different stages of the infection is not clear.
Reviewer #3 (Public review):
Summary:
This work is a valuable study that aims to decipher the molecular mechanisms underlying the translation process in Japanese encephalitis virus (JEV), a relevant member of the genus Flavivirus. The authors provide evidence that cap-independent translation, which has already been demonstrated for other flaviviruses, could also account in JEV. This process depends on the genomic 3' UTR, as previously demonstrated in other flaviviruses. Further, the authors find that cellular proteins such as DDX3 or PABP1 could contribute to JEV translation in a cap-independent way. Both DDX3 and PABP1 had previously been described to have a role in cellular protein synthesis and also in the translation step of other flaviviruses distinct from JEV; therefore, this work would expand the cap-independent translation in flaviviruses as a general mechanism to bypass the translation repression exerted by the host cell during viral infection. Further, the findings can be relevant for the development of specific drugs that could interfere with flaviviral translation in the future. Nevertheless, the conclusions are not fully supported by the provided results.
Strengths:
The results provide a good starting point to investigate the molecular mechanism underlying the translation in flaviviruses, which even today is an area of knowledge with many limitations.
Weaknesses:
The main limit of the work is related to the fact that the role of the 3' UTR structural elements and DDX3 is not only circumscribed to translation, but also to replication and encapsidation. In fact, some of the provided results suggest this idea. Particularly, it is intriguing why the virus titer can be completely abrogated while the viral protein levels are only partially affected by the knockdown of DDX3. This points to the fact that many of the drawn conclusions could be overestimated or, at least, all the observed effect cannot be attributed only to the DDX3 effect on translation. Finally, it is noteworthy that the use of uncapped transcripts could be misleading, since this is not the natural molecular context of the viral genome.