Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAkira ShinoharaOsaka University, Suita/Osaka, Japan
- Senior EditorWei YanWashington State University, Pullman, United States of America
Reviewer #1 (Public review):
Summary:
In this paper Kawasaki et al describe a regulatory role for the PIWI/piRNA pathway in rRNA regulation in Zebrafish. This regulatory role was uncovered through a screen for gonadogenesis defective mutants, which identified a mutation in the meioc gene, a coiled-coil germ granule protein. Loss of this gene leads to redistribution of Piwil1 from germ granules to the nucleolus, resulting in silencing of rRNA transcription.
Strengths:
Most of the experimental data provided in this paper is compelling. It is clear that in the absence of meioc, PiwiL1 translocates in to the nucleolus and results in down regulation of rRNA transcription. the genetic compensation of meioc mutant phenotypes (both organismal and molecular) through reduction in PiwiL1 levels are evidence for a direct role for PiwiL1 in mediating the phenotypes of meioc mutant.
Weaknesses:
Questions remain on the mechanistic details by which PiwiL1 mediated rRNA down regulation, and whether this is a function of Piwi in an unperturbed/wildtype setting. There is certainly some evidence provided in support of the natural function for piwi in regulating rRNA transcription (figure 5A+5B). However, the de-enrichment of H3K9me3 in the heterozygous (Figure 6F) is very modest and in my opinion not convincingly different relative to the control provided. It is certainly possible that PiwiL1 is regulating levels through cleavage of nascent transcripts. Another aspect I found confounding here is the reduction in rRNA small RNAs in the meioc mutant; I would have assumed that the interaction of PiwiL1 with the rRNA is mediated through small RNAs but the reduction in numbers do not support this model. But perhaps it is simply a redistribution of small RNAs that is occurring. Finally, the ability to reduce PiwiL1 in the nucleolus through polI inhibition with actD and BMH-21 is surprising. What drives the accumulation of PiwiL1 in the nucleolus then if in the meioc mutant there is less transcription anyway?
Despite the weaknesses outlined, overall I find this paper to be solid and valuable, providing evidence for a consistent link between PIWI systems and ribosomal biogenesis. Their results are likely to be of interest to people in the community, and provide tools for further elucidating the reasons for this link.
Reviewer #2 (Public review):
Summary:
In this study, the authors report that Meioc is required to upregulate rRNA transcription and promote differentiation of spermatogonial stem cells in zebrafish. The authors show that upregulated protein synthesis is required to support spermatogonial stem cells' differentiation into multi-celled cysts of spermatogonia. Coiled coil protein Meioc is required for this upregulated protein synthesis and for increasing rRNA transcription, such that the Meioc knockout accumulates 1-2 cell spermatogonia and fails to produce cysts with more than 8 spermatogonia. The Meioc knockout exhibits continued transcriptional repression of rDNA. Meioc interacts with and sequesters Piwil1 to the cytoplasm. Loss of Meioc increases Piwil1 localization to the nucleolus, where Piwil1 interacts with transcriptional silencers that repress rRNA transcription.
Strengths:
This is a fundamental study that expands our understanding of how ribosome biogenesis contributes to differentiation and demonstrates that zebrafish Meioc plays a role in this process during spermatogenesis. This work also expands our evolutionary understanding of Meioc and Ythdc2's molecular roles in germline differentiation. In mouse, the Meioc knockout phenocopies the Ythdc2 knockout, and studies thus far have indicated that Meioc and Ythdc2 act together to regulate germline differentiation. Here, in zebrafish, Meioc has acquired a Ythdc2-independent function. This study also identifies a new role for Piwil1 in directing transcriptional silencing of rDNA.
Weaknesses:
There are limited details on the stem cell-enriched hyperplastic testes used as a tool for mass spec experiments, and additional information is needed to fully evaluate the mass spec results. What mutation do these testes carry? Does this protein interact with Meioc in the wildtype testes? How could this mutation affect the results from the Meioc immunoprecipitation?
Reviewer #3 (Public review):
Summary:
The paper describes the molecular pathway to regulate germ cell differentiation in zebrafish through ribosomal RNA biogenesis. Meioc sequesters Piwil1, a Piwi homolog, which suppresses the transcription of the 45S pre-rDNA by the formation of heterochromatin, to the perinuclear bodies. The key results are solid and useful to researchers in the field of germ cell/meiosis as well as RNA biosynthesis and chromatin.
Strengths:
The authors nicely provided the molecular evidence on the antagonism of Meioc to Piwil1 in the rRNA synthesis, which supported by the genetic evidence that the inability of the meioc mutant to enter meiosis is suppressed by the piwil1 heterozygosity.
Weaknesses:
(1) Although the paper provides very convincing evidence for the authors' claim, the scientific contents are poorly written and incorrectly described. As a result, it is hard to read the text. Checking by scientific experts would be highly recommended. For example, on line 38, "the global translation activity is generally [inhibited]", is incorrect and, rather, a sentence like "the activity is lowered relative to other cells" is more appropriate here. See minor points for more examples.
(2) In some figures, it is hard for readers outside of zebrafish meiosis to evaluate the results without more explanation and drawing.
(3) Figure 1E, F, cycloheximide experiments: Please mention the toxicity of the concentration of the drug in cell proliferation and viability.