Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorOwen TamplinUniversity of Wisconsin-Madison, Madison, United States of America
- Senior EditorUtpal BanerjeeUniversity of California, Los Angeles, Los Angeles, United States of America
Reviewer #1 (Public review):
Summary:
You, Zhang et al. comprehensively characterize the long-term fates of mouse HSCs in the unperturbed setting using transposon-based lineage tracing for up to 2 years post-labeling. Their analyses reveal a complex heterogeneity of long-term fates, dominated by two behaviors: i) long-lived differentiation-biased clones, and ii) self-renewal & platelet-biased clones. They further identify two categories of multipotent progenitor clones, with one group showing a markedly reduced differentiation activity.
Strengths:
You et al. present a very comprehensive and high-resolution characterization of mouse hematopoietic clonal dynamics, with robust replicates, and technical prowess. The manuscript is beautifully written, with in-depth and clear explanations of the logic behind experimental design choices, and very well-thought-out interpretations of results.
Some of the results integrate well with past observations in the field, whereas many of them are quite unique and novel.
This will surely be a highly impactful study in the field of hematopoiesis and stem cell biology.
Weaknesses:
The authors trace hematopoiesis in situ, in a fully unbiased way for almost 2-years. They compare this time course with the last few years of Cre-LoxP-based tracing studies and they make an assumption that most hematopoiesis will be derived from some type of HSC at that point in time. They then use this assumption to support that what is being measured in their model are the long-term fates of HSCs (or at least cells that were HSC at the point of labeling). While this is a generally valid assumption, the short-lived nature of certain populations (myeloid cells, megakaryocytes) means that these cells are being produced in the context of a relatively aged environment by the time of sampling, which might change the properties of the system. In other words, the "steady-state" is always changing. It is important to read and interpret this manuscript with this in consideration.
Reviewer #2 (Public review):
Summary:
The work from You et al. elucidates the clonal contribution of ageing stem and progenitor cells to both native and perturbed hematopoiesis. The authors use a previously published in vivo lineage tracing system (Patel et al., 2022) that relies on the random integration of a transposon element in the mouse genome. They barcode all mouse cells and then look at lineage relationships between HSPC and mature populations after ~90 weeks.
Strengths:
This work offers very interesting insights into the clonal behaviour of HSPC in the native and perturbed setting during ageing. Experiments are well-planned and well-executed. Understanding the clonal output of HSPCs in aged mice in a native setting, after 5-FU treatment, and upon transplantation are important findings for the field.
Weaknesses:
We found appraising the graphs, interpreting the findings, and understanding those findings in the main text very difficult to follow. While we have made some suggestions below, we encourage the authors to think carefully about what the core messages are, and how best to visualise those, both in terms of data viz and in a schematic to summarise the key findings, and to use plain language in the text.