Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorCarlo SalaUniversity of Milan, Milan, Italy
- Senior EditorMa-Li WongState University of New York Upstate Medical University, Syracuse, United States of America
Reviewer #1 (Public review):
The authors conducted a comprehensive investigation into sleep and circadian rhythm disturbances in Fmr1 knockout (KO) mice, a model for Fragile X Syndrome (FXS). They began by monitoring daily home cage behaviors to identify disruptions in sleep and circadian patterns, then assessed the mice's adaptability to altered light conditions through photic suppression and skeleton photoperiod experiments. To uncover potential mechanisms, they examined the connectivity between the retina and the suprachiasmatic nucleus. The study also included an analysis of social behavior deficits in the mutant mice and tested whether scheduled feeding could alleviate these issues. Notably, scheduled feeding not only improved sleep, circadian, and social behaviors but also normalized plasma cytokine levels. The manuscript is strengthened by its focus on a significant and underexplored area-sleep deficits in an FXS model-and by its robust experimental design, which integrates a variety of methodological approaches to provide a thorough understanding of the observed phenomena and potential therapeutic avenues.
Reviewer #2 (Public review):
Summary:
In the present study, the authors, using a mouse model of Fragile X syndrome, explore the intriguing hypothesis that restricting food access over the daily schedule will improve sleep patterns and subsequently enhance behavioral capacities. By restricting food access from 12h to 6h over the nocturnal period (the active period for mice), they show, in these KO mice, an improvement in the sleep pattern accompanied by reduced systemic levels of inflammatory markers and improved behavior. These data, using a classical mouse model of neurodevelopmental disorder (NDD), suggest that modifying eating patterns might improve sleep quality, leading to reduced inflammation and enhanced cognitive/behavioral capacities in children with NDD.
Overall, the paper is well-written and easy to follow. The rationale of the study is generally well introduced. Data are globally sound. The interpretation is overall supported by the provided data.