Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJörn DiedrichsenWestern University, London, Canada
- Senior EditorLu ChenStanford University, Stanford, United States of America
Reviewer #1 (Public review):
Summary:
Busch and Hansel present a morphological and histological comparison between mouse and human Purkinje cells (PCs) in the cerebellum. The study reveals species-specific differences that have not previoulsy been reported despite numerous observations in these species. While mouse PCs show morphological heterogeneity and occasional multi-innervation by climbing fibers (CFs), human PCs exhibit a widespread, multi-dendritic structure that exceeds expectations based on allometric scaling. Specifically, human PCs are significantly larger, exhibit increased spine density, with a unique cluster-like morphology not found in mice.
Strengths:
The manuscript provides an exceptionally detailed analysis of PC morphology across species, surpassing any prior publication. Major strengths include a systematic and thorough methodology, rigorous data analysis, and clear presentation of results. This work is likely to become the go-to resource for quantitation in this field. The authors have largely achieved their aims, with the results effectively supporting their conclusions.
Weaknesses:
There are a few concerns that need to be addressed, specifically related to details of the methodolology as well as data interpretation based on the limits of some experimental approaches. Overall, these weaknesses are minor.
Comments on revisions:
The authors addressed my concerns in the revised manuscript. One bit of clarification, the defraction limit calculation involves the wavelength of light used for excitation not emission ("...for the minimum resolvable distance (R) given the fluorophore emission wavelength [l; 570nm for the Cy3 probe] and numerical aperture of the objective (NA) as follows:"). This is why a 2p system has less resolving power than a confocal system as it uses much longer wavelengths for excitation.
Reviewer #2 (Public review):
Summary:
This manuscript follows up on a previously published paper (Busch and Hansel 2023) which proposed that the morphological variation of dendritic bifurcation in Purkinje cells in mouse and human is indicative of the number of climbing fiber inputs, with dendritic bifurcation at the level of the soma resulting in a proportion of these neurons being multi-innervated. The functional and anatomical climbing fiber data was obtained solely from mice, since all human tissue was embalmed and fixed, and the extension of these findings to human Purkinje cells was indirect. The current comparative anatomy study aims to resolve this question in human tissue more directly and to further analyse in detail the properties of adult human Purkinje cell dendritic morphology.
Strengths:
The authors have carried out a meticulous anatomical quantification of human Purkinje cell dendrites, in tissue preparations with better signal to noise ratio than their previous study, comparing them with those from mice. They show that human PC dendrites are much larger than would be expected from straightforward scaling to brain size and, importantly, they now present immunolabelling results that trace climbing fiber axons innervating human PCs in a subset of the data. As well as providing detailed analyses of spine properties and interesting and unexpected new findings of human PC dendritic length and spine types, the work suggests that human PCs that have two clearly distinct dendritic branches have an approximately 80% chance of receiving more than one CF input, segregated across the two branches. Albeit entirely observational, the data will be of widespread interest to the cerebellar field, in particular those building computational models of Purkinje cells.
Weaknesses:
The work is, by necessity, purely anatomical. It remains to be seen whether there are any functional differences in ion channel expression or functional mapping of granule inputs to human PCs compared with the mouse that might mitigate the major differences in electronic properties suggested.
Comments on revisions:
I am happy with the updated manuscript in response to my suggestions and I have no further comments.