Mesoscale functional architecture in medial posterior parietal cortex

  1. Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, United States
  2. Neuroscience Center, University of North Carolina Chapel Hill, Chapel Hill, United States
  3. Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
  4. Department of Molecular, Cellular, and Developmental Biology, Department of Psychology and Brain Sciences, University of California Santa Barbara, Santa Barbara, United States

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Leopoldo Petreanu
    Champalimaud Center for the Unknown, Lisbon, Portugal
  • Senior Editor
    Panayiota Poirazi
    FORTH Institute of Molecular Biology and Biotechnology, Heraklion, Greece

Reviewer #1 (Public review):

Summary:

This study examined the functional organization of the mouse posterior parietal cortex (PPC) using meso-scale two-photon calcium imaging during visually-guided and history-guided tasks. The researchers found distinct functional modules within the medial PPC: area A, which integrates somatosensory and choice information, and area AM, which integrates visual and choice information. Area A also showed a robust representation of choice history and posture. The study further revealed distinct patterns of inter-area correlations for A and AM, suggesting different roles in cortical communication. These findings shed light on the functional architecture of the mouse PPC and its involvement in various sensorimotor and cognitive functions.

Strengths:

Overall, I find this manuscript excellent. It is very clearly written and built up logically. The subject is important, and the data supports the conclusions without overstating implications. Where the manuscript shines the most is the exceptionally thorough analysis of the data. The authors set a high bar for identifying the boundaries of the PPC subareas, where they combine both somatosensory and visual intrinsic imaging. There are many things to compliment the authors on, but one thing that should be applauded in particular is the analysis of the body movements of the mice in the tube. Anyone working with head-fixed mice knows that mice don't sit still but that almost invariable remains unanalyzed. Here the authors show that this indeed explained some of the variance in the data.

Weaknesses:

I see no major weaknesses and I only have minor comments.

Reviewer #2 (Public review):

Summary:

The posterior parietal cortex (PPC) has been identified as an integrator of multiple sensory streams and guides decision-making. Hira et al observe that dissection of the functional specialization of PPC subregions requires simultaneous measurement of neuronal activity throughout these areas. To this end, they use wide-field calcium imaging to capture the activity of thousands of neurons across the PPC and surrounding areas. They begin by delineating the boundaries between the primary sensory and higher visual areas using intrinsic imaging and validate their mapping using calcium imaging. They then conduct imaging during a visually guided task to identify neurons that respond selectively to visual stimuli or choices. They find that vision and choice neurons intermingle primarily in the anterior medial (AM) area, and that AM uniquely encodes information regarding both the visual stimulus and the previous choice, positioning AM as the main site of integration of behavioral and visual information for this task.

Strengths:

There is an enormous amount of data and results reveal very interesting relationships between stimulus and choice coding across areas and how network dynamics relate to task coding.

Weaknesses:

The enormity of the data and the complexity of the analysis make the manuscript hard to follow. Sometimes it reads like a laundry list of results as opposed to a cohesive story.

Reviewer #3 (Public review):

Summary:

This work from Hira et al leverages mesoscopic 2-photon imaging to study large neural populations in different higher visual areas, in particular areas A and AM of the parietal cortex. The focus of the study is to obtain a better understanding of the representation of different task-related parameters, such as choice formation and short-term history, as well as visual responses in large neural populations across different cortical regions to obtain a better understanding of the functional specialization of neural populations in each region as well as the interaction of neural populations across regions. The authors image a large number of neurons in animals that either perform visual discrimination or a history-dependent task to test how task demands affect neural responses and population dynamics. Furthermore, by including a behavioral perturbation of animal posture they aim to dissociate the neural representation of history signals from body posture. Lastly, they relate their functional findings to anatomical data from the Allen connectivity atlas and show a strong relation between functional correlations on anatomical connectivity patterns.

Strengths:

Overall, the study is very well done and tackles a problem that should be of high interest to the field by aiming to obtain a better understanding of the function and spatial structure of different regions in the parietal cortex. The experimental approach and analyses are sound and of high quality and the main conclusions are well supported by the results. Aside from the detailed analyses, a particular strength is the additional experimental perturbation of posture to isolate history-related activity which supports the conclusion that both posture and history signals are represented in different neurons within the same region.

Weaknesses:

The main point that I found hard to understand was the fairly strong language on functional clusters of neurons while also stating that neurons encoded combinations of different types of information and leveraging the encoding model to dissociate these contributions. Do the authors find mixed selectivity or rather functional segregation of neural tuning in their data? More details on this and some other points are below.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation