Strikingly different neurotransmitter release strategies in dopaminergic subclasses

  1. Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
  2. Ear Institute, University College London, London, United Kingdom

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Jun Ding
    Stanford University, Stanford, United States of America
  • Senior Editor
    Lu Chen
    Stanford University, Stanford, United States of America

Reviewer #1 (Public review):

Summary:

Dorrego-Rivas et al. investigated two different DA neurons and their neurotransmitter release properties in the main olfactory bulb. They found that the two different DA neurons in mostly glomerular layers have different morphologies as well as electrophysiological properties. The anaxonic DA neurons are able to self-inhibit but the axon-bearing ones are not. The findings are interesting and important to increase the understanding both of the synaptic transmissions in the main olfactory bulb and the DA neuron diversity. However, there are some major questions that the authors need to address to support their conclusions.

(1) It is known that there are two types of DA neurons in the glomerular layer with different diameters and capacitances (Kosaka and Kosaka, 2008; Pignatelli et al., 2005; Angela Pignatelli and Ottorino Belluzzi, 2017). In this manuscript, the authors need to articulate better which layer the imaging and ephys recordings took place, all glomerular layers or with an exception. Meanwhile, they have to report the electrophysiological properties of their recordings, including capacitances, input resistance, etc.

(2) It is understandable that recording the DA neurons in the glomerular layer is not easy. However, the authors still need to increase their n's and repeat the experiments at least three times to make their conclusion more solid. For example (but not limited to), Fig 3B, n=2 cells from 1 mouse. Fig.4G, the recording only has 3 cells.

(3) The statistics also use pseudoreplicates. It might be better to present the biology replicates, too.

(4) In Figure 4D, the authors report the values in the manuscript. It is recommended to make a bar graph to be more intuitive.

(5) In Figure 4F and G, although the data with three cells suggest no phenotype, the kinetics looked different. So, the authors might need to explore that aside from increasing the n.

(6) Similarly, for Figure 4I and J, L and M, it is better to present and analyze it like F and G, instead of showing only the after-antagonist effect.

Reviewer #2 (Public review):

Summary:

This study provides novel insights into the neurotransmitter release mechanisms employed by two distinct subclasses of dopaminergic neurons in the olfactory bulb (OB). The findings suggest that anaxonic neurons primarily release neurotransmitters through their dendrites, whereas axon-bearing neurons predominantly release neurotransmitters via their axons. Furthermore, the study reveals that anaxonic neurons exhibit self-inhibitory behavior, indicating that closely related neuronal subclasses may possess specialized roles in sensory processing.

Strengths:

This study introduces a novel and significant concept, demonstrating that two closely related neuron subclasses can exhibit distinct patterns of neurotransmitter release. Therefore, this finding establishes a valuable framework for future investigations into the functional diversity of neuronal subclasses and their contributions to sensory processing. Furthermore, these findings offer fundamental insights into the neural circuitry of the olfactory bulb, enhancing our understanding of sensory information processing within this critical brain region.

Weaknesses:

While this study offers novel insights, it is hindered by several limitations. The experimental approaches sometimes lack comprehensive justification and often rely on citations without providing adequate explanatory context. The small sample sizes (n values) compromise the statistical reliability and generalizability of the findings. Furthermore, the reliance on synaptophysin-based presynaptic structures raises concerns regarding whether these structures represent functional synapses. These shortcomings highlight the need for further refinement and additional data to substantiate the study's central conclusions. Addressing these concerns would improve the rigor and impact of the study's findings while ensuring the validity of its conclusions.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation